def get_features(self, formula):
		'''
		Parameters
		----------
		formula: string
			put a valid chemical fomula as a string. Example( 'NaCl')

		Return
		----------
		features: np.array()
			This is an 1xN length array containing feature values for use in the
			machine learning model.
		'''
		try:
			fractional_composition = mg.Composition(formula).fractional_composition.as_dict()
			element_composition = mg.Composition(formula).element_composition.as_dict()
			avg_feature = np.zeros(len(self.element_df.iloc[0]))
			sum_feature = np.zeros(len(self.element_df.iloc[0]))
			for key in fractional_composition:
				try:
					avg_feature += self.element_df.loc[key].values * fractional_composition[key]
					diff_feature = self.element_df.loc[list(fractional_composition.keys())].max()-self.element_df.loc[list(fractional_composition.keys())].min()
				except:
					print('The element:', key, 'from formula', formula,'is not currently supported in our database')
					return np.array([np.nan]*len(self.element_df.iloc[0])*4)
			max_feature = self.element_df.loc[list(fractional_composition.keys())].max()
			min_feature = self.element_df.loc[list(fractional_composition.keys())].min()

			features = pd.DataFrame(np.concatenate([avg_feature, diff_feature, np.array(max_feature), np.array(min_feature)]))
			features = np.concatenate([avg_feature, diff_feature, np.array(max_feature), np.array(min_feature)])
			return features.transpose()
		except:
			print('There was an error with the Formula: '+ formula + ', this is a general exception with an unkown error')
			return [np.nan]*len(self.element_df.iloc[0])*4
Exemplo n.º 2
0
    def get_ABE(self, formula, A_site, B_site, verbose=False):
        """
		Estimate average metal-oxygen bond energy for complex perovskite oxide from simple oxide thermo data
		Formula from Sammells et al. (1992), Solid State Ionics 52, 111-123.
		
		Parameters:
		-----------
		formula: oxide formula
		A_site: list of A-site elements
		B_site: list of B-site elements
		verbose: if True, print info about which simple oxides used in calculation
		"""
        #validated on compounds in Sammells 1992 - all but CaTi0.7Al0.3O3 agree
        #validated on (La,Sr)(Cr,Co,Fe)O3 compounds in https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b10571/suppl_file/jp6b10571_si_001.pdf
        #works if Co3O4 specified in oxide_dict
        comp = mg.Composition(formula)
        cd = comp.get_el_amt_dict()
        metals = [x for x in cd.keys() if x != 'O']
        abe = 0
        if verbose == True:
            print('Oxides used for ABE calculation:')
        for metal in metals:
            amt = cd[metal]
            met_mg = mg.Element(metal)

            try:  #oxide_dict specifies which oxide to use
                oxide = self.oxide_dict[metal]
                oxide_mg = mg.Composition(oxide)
                m = oxide_mg.get(metal)
                n = oxide_mg.get('O')
                obe = self.oxide_obe(oxide)
            except KeyError:  #if no oxide indicated in oxide_dict
                "placeholder - for now, take the lowest common oxidation state with a corresponding stable oxide"
                i = 0
                while i != -1:
                    ox = met_mg.common_oxidation_states[i]
                    oxide, m, n = self.oxide_formula(metal, ox, return_mn=True)
                    try:
                        obe = self.oxide_obe(oxide)
                        #print(obe)
                        i = -1
                    except LookupError as err:
                        i += 1  #try the next oxidation state

            if verbose == True:
                print(oxide)
            #print('m: {}, n: {}'.format(m,n))
            if metal in A_site:
                abe += amt * obe / (12 * m)
            elif metal in B_site:
                abe += amt * obe / (6 * m)
            else:
                raise KeyError(
                    '{} is not assigned to A or B site'.format(metal))
            #print(abe)

        return abe
Exemplo n.º 3
0
 def get_features(self, formula):
     try:
         fractional_composition = mg.Composition(
             formula).fractional_composition.as_dict()  #显示化学式归一成分
         element_composition = mg.Composition(
             formula).element_composition.as_dict()  #显示化学式成分
         avg_feature = np.zeros(len(self.element_df.iloc[0]))
         std_feature = np.zeros(len(self.element_df.iloc[0]))
         for key in fractional_composition:
             try:
                 avg_feature += self.element_df.loc[
                     key].values * fractional_composition[key]
                 #element_df.loc[key].values为元素表中相应属性值,
                 #fractional_composition[key]为化学成分中元素所对应的成分
                 #element_df.loc[key].values * fractional_composition[key]=原子属性值在化学式式中所占有的比例值
                 diff_feature = self.element_df.loc[list(
                     fractional_composition.keys())].max(
                     ) - self.element_df.loc[list(
                         fractional_composition.keys())].min()
                 #找出化学式中每种原子的每种属性的最大值和最小值,然后相减
             except Exception as e:
                 print('The element:', key, 'from formula', formula,
                       'is not currently supported in our database')
                 return np.array([np.nan] * len(self.element_df.iloc[0]) *
                                 5)
         max_feature = self.element_df.loc[list(
             fractional_composition.keys())].max()
         min_feature = self.element_df.loc[list(
             fractional_composition.keys())].min()
         std_feature = self.element_df.loc[list(
             fractional_composition.keys())].std(ddof=0)
         # 把相关的信息拼接成
         features = pd.DataFrame(
             np.concatenate([
                 avg_feature, diff_feature,
                 np.array(max_feature),
                 np.array(min_feature),
                 np.array(std_feature)
             ]))
         features = np.concatenate([
             avg_feature, diff_feature,
             np.array(max_feature),
             np.array(min_feature),
             np.array(std_feature)
         ])
         return features.transpose()
     except:
         print('There was an error with the Formula: ' + formula +
               ', this is a general exception with an unkown error')
         return [np.nan] * len(self.element_df.iloc[0]) * 5
Exemplo n.º 4
0
def run(mpfile, **kwargs):
    import pymatgen
    import pandas as pd
    from mpcontribs.users.swf.rest.rester import SwfRester

    # load data from google sheet
    google_sheet = mpfile.document[mp_level01_titles[0]].pop("google_sheet")
    google_sheet += "/export?format=xlsx"
    df_dct = pd.read_excel(google_sheet, sheet_name=None)

    # rename sheet columns
    elements = ["Fe", "V", "Co"]
    df_dct["IP Energy Product"].columns = ["IP_Energy_product"] + elements
    df_dct["total"].columns = elements
    df_dct["MOKE"].columns = elements + ["thickness", "MOKE_IP_Hc"]
    df_dct["VSM"].columns = elements + ["thickness", "VSM_IP_Hc"]
    df_dct["formula"].columns = elements
    df_dct["Kondorsky"].columns = ["angle", "Kondorsky_Model", "Experiment"]

    # round all compositions to 100%
    for sheet, df in df_dct.items():
        if sheet != "Kondorsky":
            for idx, row in df.iterrows():
                df.loc[idx:idx, elements] = round_to_100_percent(row[elements])

    row5 = df_dct["formula"].iloc[0]
    formula5 = get_composition_from_string(
        pymatgen.Composition(10 * row5).formula.replace(" ", ""))
    dct = dict((k, clean_value(v, "%")) for k, v in row5.to_dict().items())
    mpfile.add_hierarchical_data({"data": dct}, identifier=formula5)
    mpfile.add_data_table(formula5,
                          df_dct["Kondorsky"],
                          name="Angular Dependence of Switching Field")

    for sheet, df in df_dct.items():
        if sheet == "formula" or sheet == "Kondorsky" or sheet == "total":
            continue
        for idx, row in df.iterrows():
            composition = pymatgen.Composition(row[elements] * 10)
            formula = get_composition_from_string(
                composition.formula.replace(" ", ""))
            dct = dict((k, clean_value(v, "%"))
                       for k, v in row[elements].to_dict().items())
            mpfile.add_hierarchical_data({"data": dct}, identifier=formula)
            columns = [x for x in row.index if x not in elements]
            if columns:
                data = row[columns].round(decimals=1)
                dct = dict(
                    (k, clean_value(v)) for k, v in data.to_dict().items())
                mpfile.add_hierarchical_data({"data": dct}, identifier=formula)
Exemplo n.º 5
0
def run(mpfile, **kwargs):
    import pymatgen
    import pandas as pd
    from mpcontribs.users.swf.rest.rester import SwfRester

    # load data from google sheet
    google_sheet = mpfile.document[mp_level01_titles[0]].pop('google_sheet')
    google_sheet += '/export?format=xlsx'
    df_dct = pd.read_excel(google_sheet, sheet_name=None)

    # rename sheet columns
    elements = ['Fe', 'V', 'Co']
    df_dct['IP Energy Product'].columns = ['IP_Energy_product'] + elements
    df_dct['total'].columns = elements
    df_dct['MOKE'].columns = elements + ['thickness', 'MOKE_IP_Hc']
    df_dct['VSM'].columns = elements + ['thickness', 'VSM_IP_Hc']
    df_dct['formula'].columns = elements
    df_dct['Kondorsky'].columns = ['angle', 'Kondorsky_Model', 'Experiment']

    # round all compositions to 100%
    for sheet, df in df_dct.items():
        if sheet != 'Kondorsky':
            for idx, row in df.iterrows():
                df.loc[idx:idx, elements] = round_to_100_percent(row[elements])

    row5 = df_dct['formula'].iloc[0]
    formula5 = get_composition_from_string(
        pymatgen.Composition(10 * row5).formula.replace(' ', ''))
    dct = dict((k, clean_value(v, '%')) for k, v in row5.to_dict().items())
    mpfile.add_hierarchical_data({'data': dct}, identifier=formula5)
    mpfile.add_data_table(formula5,
                          df_dct['Kondorsky'],
                          name='Angular Dependence of Switching Field')

    for sheet, df in df_dct.items():
        if sheet == 'formula' or sheet == 'Kondorsky' or sheet == 'total':
            continue
        for idx, row in df.iterrows():
            composition = pymatgen.Composition(row[elements] * 10)
            formula = get_composition_from_string(
                composition.formula.replace(' ', ''))
            dct = dict((k, clean_value(v, '%'))
                       for k, v in row[elements].to_dict().items())
            mpfile.add_hierarchical_data({'data': dct}, identifier=formula)
            columns = [x for x in row.index if x not in elements]
            if columns:
                data = row[columns].round(decimals=1)
                dct = dict(
                    (k, clean_value(v)) for k, v in data.to_dict().items())
                mpfile.add_hierarchical_data({'data': dct}, identifier=formula)
Exemplo n.º 6
0
    def get_class(self, formula):
        output = ''

        try:
            dc = pg.Composition(formula, strict=False).as_dict().keys()
        except Exception as ce:
            print("Exception when parsing " + str(formula) + ". Error: " +
                  str(ce))
            # Trying with some tricks
            c_with_replacements = re.sub(r'[+-][ZXYzxy]', '', formula)
            try:
                print("Trying to parse " + str(c_with_replacements))
                dc = pg.Composition(c_with_replacements,
                                    strict=False).as_dict().keys()
            except Exception as ce:
                print("Exception when parsing " + str(c_with_replacements) +
                      ". Error: " + str(ce))
                # We give up... skipping this record
                return output

        input_formula = list(dc)

        # print(" Input Formula: " + str(input_formula))

        for composition in self.composition_map:
            and_compounds = []
            if 'and_compounds' in composition:
                and_compounds = composition['and_compounds']

            or_compounds = []
            if 'or_compounds' in composition:
                or_compounds = composition['or_compounds']

            output_class = composition['name']

            if len(and_compounds) > 0:
                if all(elem in input_formula for elem in and_compounds):
                    output = output_class
                    break
            elif len(or_compounds) > 0:
                if any(elem in input_formula for elem in or_compounds):
                    output = output_class
                    break

        if output == '':
            output = "Alloy"

        return output
Exemplo n.º 7
0
def check_neutrality_4(formula):
    charge_neutral_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    max_num = max(reduce_formula.values())
    for i, ele_a in enumerate(list_of_elements):
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i+1:]):
                for ox_b in smact.Element(ele_b).oxidation_states:
                    for k, ele_c in enumerate(list_of_elements[i+j+2:]):
                        for ox_c in smact.Element(ele_c).oxidation_states:
                            for m, ele_d in enumerate(list_of_elements[i+j+k+3:]):
                                for ox_d in smact.Element(ele_d).oxidation_states:
                            
                                    # Checks if the combination is charge neutral before printing it out! #                        
                                    cn_e, cn_r = neutral_ratios([ox_a, ox_b, ox_c, ox_d], threshold = int(max_num))
                                    
                                    if cn_e:
                                        for num in cn_r:
                                            if tuple(reduce_formula.values()) == num:
                                                return True

                                                                # print(cn_e)
                                                                # print(cn_r)
                                                                # print(ox_a, ox_b, ox_c)
                                                                # charge_neutral_count = charge_neutral_count + 1
                                                                # print('{0:3s}  {1:3s}  {2:3s}'.format(ele_a, ele_b, ele_c))
    print('Number of combinations = {0}'.format(charge_neutral_count))
    print("--- {0} seconds to run ---".format(time.time() - start_time)) 
    return False
Exemplo n.º 8
0
	def ox_states_from_binary_formula(self,formula,anion=None,anion_ox_state=None):
		"""
		Determine oxidation states from binary formula.
		Could also use mg.Composition.oxi_state_guesses(), but the logic used is more complex.

		Args:
			formula: chemical formula
			anion: Element symbol of anion. If None, search for common anion
			anion_ox_state: oxidation state of anion. If None, assume common oxidation state
		"""
		comp = mg.Composition(formula)
		if len(comp.elements) != 2:
			raise ValueError('Formula must be binary')
		# determine anion
		if anion is None:
			anion = np.intersect1d([e.name for e in comp.elements],self.common_anions)
			if len(anion) > 1:
				raise ValueError('Found multiple possible anions in formula. Please specify anion')
			elif len(anion)==0:
				raise ValueError('No common anions found in formula. Please specify anion')
			else:
				anion = anion[0]
		metal = np.setdiff1d(comp.elements,mg.Element(anion))[0].name
			
		#get common oxidation state for anion
		if anion_ox_state is None:
			anion_ox_state = [ox for ox in mg.Element(anion).common_oxidation_states if ox < 0]
			if len(anion_ox_state) > 1:
				raise Exception(f"Multiple common oxidation states for {anion}. Please specify anion_ox_state")
			else:
				anion_ox_state = anion_ox_state[0]
				
		metal_ox_state = -comp.get(anion)*anion_ox_state/comp.get(metal)
		
		return {metal:metal_ox_state,anion:anion_ox_state}
def check_electronegativity_2(formula):
    pauling_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    max_num = max(reduce_formula.values())
    for i, ele_a in enumerate(list_of_elements):
        paul_a = smact.Element(ele_a).pauling_eneg
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i + 1:]):
                paul_b = smact.Element(ele_b).pauling_eneg
                for ox_b in smact.Element(ele_b).oxidation_states:
                    # Puts elements, oxidation states and electronegativites into lists for convenience #
                    elements = [ele_a, ele_b]
                    oxidation_states = [ox_a, ox_b]
                    pauling_electro = [paul_a, paul_b]
                    # Checks if the electronegativity makes sense and if the combination is charge neutral #
                    electroneg_makes_sense = pauling_test(
                        oxidation_states, pauling_electro, elements)
                    cn_e, cn_r = neutral_ratios([ox_a, ox_b],
                                                threshold=int(max_num))

                    if cn_e:
                        if electroneg_makes_sense:
                            pauling_count = pauling_count + 1

                            for num in cn_r:
                                if tuple(reduce_formula.values()) == num:
                                    # print('{0:2s}{1:3d}   {2:2s}{3:3d}   {4:2s}{5:3d}'.format(ele_a, ox_a, ele_b,
                                    #                                               ox_b, ele_c, ox_c))
                                    return True

    print('Number of combinations = {0}'.format(pauling_count))
    print("--- {0} seconds to run ---".format(time.time() - start_time))
    return False
Exemplo n.º 10
0
def check_neutrality_2(formula):
    charge_neutral_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    # stoichs = np.array(list(reduce_formula.values())).astype(np.int32)[:,np.newaxis]
    max_num = max(reduce_formula.values())
    for i, ele_a in enumerate(list_of_elements):
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i+1:]):
                for ox_b in smact.Element(ele_b).oxidation_states:                    
                            
                    # Checks if the combination is charge neutral before printing it out! #                        
                    # neutral_ratios(oxidations, stoichs=False, threshold=5) #speed up by providing stoichs 
                    # cn_e, cn_r = neutral_ratios([ox_a, ox_b], threshold = int(max_num))
                    cn_e, cn_r = neutral_ratios([ox_a, ox_b], threshold = int(max_num))
                    
                    if cn_e:
                        for num in cn_r:
                            if tuple(reduce_formula.values()) == num:
                                return True

                        # print(cn_e)
                        # print(cn_r)
                        # print(ox_a, ox_b, ox_c)
                        # charge_neutral_count = charge_neutral_count + 1
                        # print('{0:3s}  {1:3s}  {2:3s}'.format(ele_a, ele_b, ele_c))
    print('Number of combinations = {0}'.format(charge_neutral_count))
    print("--- {0} seconds to run ---".format(time.time() - start_time)) 
    return False
Exemplo n.º 11
0
    def get_features(self, formula):
        try:
            fractional_composition = mg.Composition(
                formula).fractional_composition.as_dict()
            element_composition = mg.Composition(
                formula).element_composition.as_dict()
            avg_feature = np.zeros(len(self.element_df.iloc[0]))
            std_feature = np.zeros(len(self.element_df.iloc[0]))
            for key in fractional_composition:
                try:
                    avg_feature += self.element_df.loc[
                        key].values * fractional_composition[key]
                    diff_feature = self.element_df.loc[list(
                        fractional_composition.keys())].max(
                        ) - self.element_df.loc[list(
                            fractional_composition.keys())].min()
                except Exception as e:
                    print('The element:', key, 'from formula', formula,
                          'is not currently supported in our database')
                    return np.array([np.nan] * len(self.element_df.iloc[0]) *
                                    5)
            max_feature = self.element_df.loc[list(
                fractional_composition.keys())].max()
            min_feature = self.element_df.loc[list(
                fractional_composition.keys())].min()
            std_feature = self.element_df.loc[list(
                fractional_composition.keys())].std(ddof=0)

            features = pd.DataFrame(
                np.concatenate([
                    avg_feature, diff_feature,
                    np.array(max_feature),
                    np.array(min_feature),
                    np.array(std_feature)
                ]))
            features = np.concatenate([
                avg_feature, diff_feature,
                np.array(max_feature),
                np.array(min_feature),
                np.array(std_feature)
            ])
            return features.transpose()
        except:
            print('There was an error with the Formula: ' + formula +
                  ', this is a general exception with an unkown error')
            return [np.nan] * len(self.element_df.iloc[0]) * 5
Exemplo n.º 12
0
def get_elem_of_interest(formula_str):
    """Get the element of interest from the chemical formula"""
    # get all the elements
    elem_lst = mg.Composition(formula_str).elements
    # grab the second last element from the right
    elem_of_interest = elem_lst[-2]
    # return the element symbol in string format
    return elem_of_interest.symbol
def check_electronegativity_8(formula):
    pauling_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    max_num = max(reduce_formula.values())
    # for element in reduce_formula.keys():
    #     print(len(smact.Element(element).oxidation_states), end = ",")

    for i, ele_a in enumerate(list_of_elements):
        paul_a = smact.Element(ele_a).pauling_eneg
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i+1:]):
                paul_b = smact.Element(ele_b).pauling_eneg
                for ox_b in smact.Element(ele_b).oxidation_states:
                    for k, ele_c in enumerate(list_of_elements[i+j+2:]):
                        paul_c = smact.Element(ele_c).pauling_eneg
                        for ox_c in smact.Element(ele_c).oxidation_states:
                            for m, ele_d in enumerate(list_of_elements[i+j+k+3:]):
                                paul_d = smact.Element(ele_d).pauling_eneg
                                for ox_d in smact.Element(ele_d).oxidation_states:
                                    for n, ele_e in enumerate(list_of_elements[i+j+k+m+4:]):
                                        paul_e = smact.Element(ele_e).pauling_eneg
                                        for ox_e in smact.Element(ele_e).oxidation_states:
                                            for p, ele_f in enumerate(list_of_elements[i+j+k+m+n+5:]):
                                                paul_f = smact.Element(ele_f).pauling_eneg
                                                for ox_f in smact.Element(ele_f).oxidation_states:
                                                    for q, ele_g in enumerate(list_of_elements[i+j+k+m+n+p+6:]):
                                                        paul_g = smact.Element(ele_g).pauling_eneg
                                                        for ox_g in smact.Element(ele_g).oxidation_states:
                                                            for s, ele_h in enumerate(list_of_elements[i+j+k+m+n+p+q+7:]):
                                                                paul_h = smact.Element(ele_h).pauling_eneg
                                                                for ox_h in smact.Element(ele_h).oxidation_states:
                                                                    # Puts elements, oxidation states and electronegativites into lists for convenience #
                                                                    elements = [ele_a, ele_b, ele_c, ele_d, ele_e, ele_f, ele_g, ele_h]
                                                                    oxidation_states = [ox_a, ox_b, ox_c, ox_d, ox_e, ox_f, ox_g, ox_h]
                                                                    pauling_electro = [paul_a, paul_b, paul_c, paul_d, paul_e, paul_f, paul_g, paul_h]
                                                                    if None in pauling_electro:
                                                                        print("No pauling electronegativity data")
                                                                        return False
                                                                    # Checks if the electronegativity makes sense and if the combination is charge neutral #
                                                                    electroneg_makes_sense = pauling_test(oxidation_states, pauling_electro, elements)
                                                                    cn_e, cn_r = neutral_ratios([ox_a, ox_b, ox_c, ox_d, ox_e, ox_f, ox_g, ox_h], threshold = int(max_num))
                                                                    
                                                                    if cn_e:
                                                                        if electroneg_makes_sense:
                                                                            pauling_count = pauling_count + 1

                                                                            for num in cn_r:
                                                                                if tuple(reduce_formula.values()) == num:
                                                                                    # print('{0:2s}{1:3d}   {2:2s}{3:3d}   {4:2s}{5:3d}'.format(ele_a, ox_a, ele_b,
                                                                                    #                                               ox_b, ele_c, ox_c))
                                                                                    return True
                                                              
    # print('Number of combinations = {0}'.format(pauling_count))
    # print("--- {0} seconds to run ---".format(time.time() - start_time)) 
    return False
def check_electronegativity_4(formula):
    pauling_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    stoichs = list(
        np.array(list(reduce_formula.values())).astype(np.int32)[:,
                                                                 np.newaxis])
    max_num = max(reduce_formula.values())
    for i, ele_a in enumerate(list_of_elements):
        paul_a = smact.Element(ele_a).pauling_eneg
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i + 1:]):
                paul_b = smact.Element(ele_b).pauling_eneg
                for ox_b in smact.Element(ele_b).oxidation_states:
                    for k, ele_c in enumerate(list_of_elements[i + j + 2:]):
                        paul_c = smact.Element(ele_c).pauling_eneg
                        for ox_c in smact.Element(ele_c).oxidation_states:
                            for m, ele_d in enumerate(
                                    list_of_elements[i + j + k + 3:]):
                                paul_d = smact.Element(ele_d).pauling_eneg
                                for ox_d in smact.Element(
                                        ele_d).oxidation_states:
                                    # Puts elements, oxidation states and electronegativites into lists for convenience #
                                    elements = [ele_a, ele_b, ele_c, ele_d]
                                    oxidation_states = [ox_a, ox_b, ox_c, ox_d]
                                    pauling_electro = [
                                        paul_a, paul_b, paul_c, paul_d
                                    ]
                                    if None in pauling_electro:
                                        print(
                                            "No pauling electronegativity data"
                                        )
                                        return False
                                    # Checks if the electronegativity makes sense and if the combination is charge neutral #
                                    electroneg_makes_sense = pauling_test(
                                        oxidation_states, pauling_electro,
                                        elements)
                                    cn_e, cn_r = neutral_ratios(
                                        [ox_a, ox_b, ox_c, ox_d],
                                        stoichs=stoichs,
                                        threshold=int(max_num))

                                    if cn_e:
                                        if electroneg_makes_sense:
                                            pauling_count = pauling_count + 1

                                            for num in cn_r:
                                                if tuple(reduce_formula.values(
                                                )) == num:
                                                    # print('{0:2s}{1:3d}   {2:2s}{3:3d}   {4:2s}{5:3d}'.format(ele_a, ox_a, ele_b,
                                                    #                                               ox_b, ele_c, ox_c))
                                                    return True

    # print('Number of combinations = {0}'.format(pauling_count))
    # print("--- {0} seconds to run ---".format(time.time() - start_time))
    return False
 def transform(self, X_df):
     formulas = X_df.formula.values
     input = np.zeros(shape=(len(formulas), len(elements)),
                      dtype=np.float32)
     for i, formula in enumerate(formulas):
         comp = mg.Composition(formula).as_dict()
         for k in comp.keys():
             input[i][elements.index(k)] = comp[k]
     return input
Exemplo n.º 16
0
	def get_fH(self,formula, phase='solid', data_type='exp',silent=True,exclude_phases=[]):
		"""
		Get average experimental formation enthalpy for formula and phase
		
		Parameters:
		-----------
		formula: chemical formula string
		phase: phase string. Can be 'solid', 'liquid', 'gas', or a specific solid phase (e.g. 'monoclinic'). If 'solid', returns average across all solid phases
		"""
		#first check for corrected/saved data in fH_dict
		try:
			fH,msg = self.fH_dict[(formula,phase,data_type,','.join(exclude_phases))]
			if silent==False:
				#print('already calculated')
				print(msg)
		#if no entry exists, look up in MP
		except KeyError:
			results = self.mp.get_data(formula,data_type=data_type)
			if data_type=='exp':
				#results = self.mp.get_exp_thermo_data(formula)
				if phase=='solid':
					phase_results = [r for r in results if r.type=='fH' and r.phaseinfo not in ['liquid','gas']+exclude_phases]
				else:
					phase_results = [r for r in results if r.type=='fH' and r.phaseinfo==phase]
				phases = np.unique([r.phaseinfo for r in phase_results])
				fH = [r.value for r in phase_results]
				
			elif data_type=='vasp':
				if phase in ('liquid','gas'):
					raise ValueError('VASP data only valid for solid phases')
				elif phase=='solid':
					#get entry with lowest energy above hull
					srt_results = sorted(results,key=lambda x: x['e_above_hull'])
					phase_results = srt_results[0:1]
				else:
					phase_results = [r for r in results if r['spacegroup']['crystal_system']==phase]
				phases = np.unique([r['spacegroup']['crystal_system'] for r in phase_results])
				n_atoms = mg.Composition(formula).num_atoms
				#DFT formation energies given in eV per atom - need to convert to kJ/mol
				fH = [r['formation_energy_per_atom']*n_atoms*96.485 for r in phase_results]
				
			if len(fH)==0:
				raise LookupError('No {} data for {} in {} phase'.format(data_type,formula,phase))
			maxdiff = np.max(fH) - np.min(fH)
			if maxdiff > 15:
				warnings.warn('Max discrepancy of {} in formation enthalpies for {} exceeds limit'.format(maxdiff,formula))
			fH = np.mean(fH)
			
			msg = 'Formation enthalpy for {} in {} phase includes {} data from phases: {}'.format(formula,phase,data_type,', '.join(phases))
			if silent==False:
				print(msg)
			
			#store value and info message for future lookup
			self.fH_dict[(formula,phase,data_type,','.join(exclude_phases))] = (fH,msg)
			
		return fH
Exemplo n.º 17
0
 def _contains_element(self, comp):
     """
     Returns 1 if comp contains that element, and 0 if not.
     Uses ints because sklearn and numpy like number classes better than bools. Could even be
     something crazy like "contains {element}" and "does not contain {element}" if you really
     wanted.
     """
     comp = pymatgen.Composition(comp)
     count = comp[self.element]
     return int(count != 0)
Exemplo n.º 18
0
def normalize_and_alphabetize_formula(formula):
    '''Normalizes composition labels. Used to enable matching / groupby on compositions.'''

    if formula:
        try:
            comp = mg.Composition(formula)
            weights = [comp.get_atomic_fraction(ele) for ele in comp.elements]
            normalized_weights = [round(w / max(weights), 3) for w in weights]
            normalized_comp = "".join([
                str(x) + str(y)
                for x, y in zip(comp.elements, normalized_weights)
            ])

            return mg.Composition(normalized_comp).alphabetical_formula
        except:
            print("INVALID: ", formula)
            return None
    else:
        return None
Exemplo n.º 19
0
	def __init__(self,composition,radius_type='ionic_radius',normalize_formula=False):
		self.cations = [el.name for el in composition.elements if el.name!='O']
		self.radius_type = radius_type
		
		if normalize_formula==True:
			#scale to single total unit of cations
			tot_cat_amt = sum([composition[c] for c in self.cations])
			composition = mg.Composition({el:amt/tot_cat_amt for el,amt in composition.get_el_amt_dict().items()})
			
		self.composition = composition
		self.metal_composition = mg.Composition({c:self.composition[c] for c in self.cations})
		
		#checks
		if len(self.cations)==0:
			raise Exception('No cations in composition')
		# if self.composition['O']!=self.composition['Ba'] + self.composition['Ca'] + self.composition['Al']*3/2:
			# raise Exception('Oxygen amount does not match BaO, CaO, Al2O3 stoichiometry')
		if self.radius_type not in ('crystal_radius','ionic_radius'):
			raise Exception(f'Invalid radius type {self.radius_type}. Options are crystal_radius and ionic_radius')
Exemplo n.º 20
0
	def featurize(self, comp):
		"""
		Args:
			comp: (Composition)
				pymatgen Composition object
		Returns:
			HOMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f')
			HOMO_element: (str) symbol of element for H**O
			HOMO_energy: (float in eV) absolute energy of H**O
			LUMO_character: (str) orbital symbol ('s', 'p', 'd', or 'f')
			LUMO_element: (str) symbol of element for LUMO
			LUMO_energy: (float in eV) absolute energy of LUMO
			gap_AO: (float in eV)
				the estimated bandgap from H**O and LUMO energeis
		"""

		integer_comp, factor = comp.get_integer_formula_and_factor()

		# warning message if composition is dilute and truncated
		if not (len(mg.Composition(comp).elements) ==
				len(mg.Composition(integer_comp).elements)):
			warn('AtomicOrbitals: {} truncated to {}'.format(comp,
															 integer_comp))

		homo_lumo = MolecularOrbitals(integer_comp).band_edges

		feat = collections.OrderedDict()
		
		for edge in ['H**O', 'LUMO']:
			if homo_lumo[edge] is not None:
				feat['{}_character'.format(edge)] = homo_lumo[edge][1][-1]
				feat['{}_element'.format(edge)] = homo_lumo[edge][0]
				feat['{}_energy'.format(edge)] = homo_lumo[edge][2]
			else:
				#if LUMO is None
				feat['{}_character'.format(edge)] = 'na'
				feat['{}_element'.format(edge)] = 'na'
				#unclear what this value should be. Arbitrarily set to 0. Don't want NaN for modeling
				feat['{}_energy'.format(edge)] = 0 
				
		feat['gap_AO'] = feat['LUMO_energy'] - feat['HOMO_energy']

		return list(feat.values())
Exemplo n.º 21
0
def calculate_density(formula):
    '''Calculates densisty based on Rule of Mixtures (ROM).'''

    comp = mg.Composition(formula)

    weights = [comp.get_atomic_fraction(e) for e in comp.elements]
    vols = np.array([e.molar_volume for e in comp.elements])
    atomic_masses = np.array([e.atomic_mass for e in comp.elements])

    val = np.sum(weights * atomic_masses) / np.sum(weights * vols)

    return round(val, 1)
Exemplo n.º 22
0
 def _contains_all_elements(self, compositions):
     elements = list()
     df_trans = pd.DataFrame()
     for comp in compositions.values:
         comp = pymatgen.Composition(comp)
         for element in comp.elements:
             if element not in elements:
                 elements.append(element)
     for element in elements:
         self.element = element
         self.new_column_name = "has_" + str(self.element)
         has_element = compositions.apply(self._contains_element)
         df_trans[self.new_column_name] = has_element
     return df_trans
Exemplo n.º 23
0
def calculate_youngs_modulus(formula):
    '''Calculates Young Modulus based on Rule of Mixtures (ROM).'''

    comp = mg.Composition(formula)

    weights = np.array([comp.get_atomic_fraction(e) for e in comp.elements])
    vols = np.array([e.molar_volume for e in comp.elements])
    ym_vals = np.array([e.youngs_modulus for e in comp.elements])

    if None in ym_vals:
        return ''

    val = np.sum(weights * vols * ym_vals) / np.sum(weights * vols)

    return int(round(val, 0))
Exemplo n.º 24
0
def load_data(file_path):
	if not os.path.exists(file_path):
		myfile = open(file_path, "w")
		myfile.close()
	file = open(file_path, "r")
	all_formula = []
	for ind, form in enumerate(file.readlines()):
		if form == "reduced_cell_formula\n":
			continue
		comp = mg.Composition(form)
		reduce_formula = comp.get_el_amt_dict()
		for key in reduce_formula.keys():
			reduce_formula[key] = int(reduce_formula[key])
		all_formula.append(reduce_formula)
	return all_formula
Exemplo n.º 25
0
	def MX_bond_energy(self,formula,data_type='exp',ordered_formula=False,silent=True,exclude_phases=[]):
		"""
		Get metal-anion bond energy per mole of metal for binary ionic compound
		
		Parameters:
		-----------
		formula: chemical formula string
		ordered_formula: if true, assume that first element in formula is metal, and second is anion (i.e. MmXn)
		exclude_phases: phases to exclude from aggregate over all solid phases
		"""
		
		comp = mg.Composition(formula)
		formula = comp.reduced_formula
		try:
			#look up compound if already calculated
			abe,msg = self.calc_MX_bond_energy[(formula,data_type,','.join(exclude_phases))]
			if silent==False:
				#print('already calculated')
				print(msg)
		except KeyError:
			if len(comp.elements) != 2:
				raise Exception("Formula is not a binary compound")
				
			if ordered_formula is False:
				anions = [el.name for el in comp.elements if el.name in self.common_anions]
				if len(anions) == 0:
					raise Exception('No common anions found in formula. Use ordered formula to indicate metal and anion')
				elif len(anions) > 1:
					raise Exception('Multiple anions found in formula.  Use ordered formula to indicate metal and anion')
				else:
					anion = anions[0]
				metal = [el.name for el in comp.elements if el.name!=anion][0]
			elif ordered_formula is True:
				metal = comp.elements[0].name
				anion = comp.elements[1].name
				
			m = comp.get_el_amt_dict()[metal]
			n = comp.get_el_amt_dict()[anion]
				
			fH = self.get_fH(formula,data_type=data_type,silent=silent,exclude_phases=exclude_phases) #oxide formation enthalpy
			H_sub = self.get_fH(metal, phase='gas',silent=silent,exclude_phases=[]) #metal sublimation enthalpy - must be exp data (no vasp data for gas)
			#look up info messages from get_fH to store in dict
			msg = self.fH_dict[formula,'solid',data_type,','.join(exclude_phases)][1] + '\n'
			msg += self.fH_dict[metal,'gas','exp',''][1]
			DX2 = self.dissocation_energy[anion] #anion dissociation energy
			abe = (fH - m*H_sub - (n/2)*DX2)/m #M-O bond energy per mole of M
			self.calc_MX_bond_energy[(formula,data_type,','.join(exclude_phases))] = (abe,msg)
		return abe
Exemplo n.º 26
0
 def __call__(self, formulas):
     if isinstance(formulas, str):
         formulas = [formulas]
     reduce_forms = []
     for i, formula in enumerate(formulas):
         comp = mg.Composition(formula)
         reduce_form = comp.get_el_amt_dict()
         reduce_forms.append(reduce_form)
     one_hot_vec = []
     for ind, formula in enumerate(reduce_forms):
         vec = np.zeros((1, len(self.Periodic_table)))
         keys = formula.keys()
         for symbols in keys:
             symbols_index = list(self.Periodic_table).index(symbols)
             vec[0, symbols_index] = float(formula[symbols])
         one_hot_vec.append(vec)
     one_hot_vec = np.concatenate(one_hot_vec, axis=0)
     return one_hot_vec
Exemplo n.º 27
0
def create_inequalities(compounds, eoi, control_element = None):
    # Assumes that the anion is placed last
    inequalities = {}
    formulas = {}
    if control_element is None:
        control_element = eoi[-1]
    for compound in compounds:
        comp = pmg.Composition(compound['pretty_formula'])
        dict = comp.get_el_amt_dict()
        lhs = []
        for k in list(dict.keys()):
            lhs.append([k, dict[k]])
        formulas[compound['pretty_formula']] = lhs
    for compound in compounds:
        per_comp = []
        c_formula = formulas[compound['pretty_formula']]
        # Basic inequalities
        per_comp.append([c_formula, '<', compound['final_energy']])
        for items in c_formula:
            if items[0] != control_element:
                per_comp.append([[items], '>', compound['final_energy']])
                per_comp.append([[items], '<', 0])
        # Generates inequalities outside the first one
        for o_comp in compounds:
            if o_comp != compound:
                o_formula = formulas[o_comp['pretty_formula']]
                compul = [x[1] for x in c_formula if x[0] == control_element][0]
                o_compul = [x[1] for x in o_formula if x[0] == control_element][0]
                f = lcm(compul, o_compul)
                constants = [[x[0], x[1]*f/compul] for x in c_formula]
                o_constants = [[x[0], x[1]*f/o_compul] for x in o_formula]
                f_constants = []
                for elm in [x for x in eoi if x!= control_element]:
                    el = [x[1] for x in constants if x[0] == elm]
                    sel = [x[1] for x in o_constants if x[0] == elm]
                    if len(el) == 0:
                        el = [0]
                    if len(sel) == 0:
                        sel = [0]
                    f_constants.append([elm, el[0]-sel[0]])
                per_comp.append([o_comp['pretty_formula'], f_constants, '>',
                                f*(compound['final_energy']/compul-o_comp['final_energy']/o_compul)])
        inequalities[compound['pretty_formula']] = per_comp
    return inequalities
Exemplo n.º 28
0
def check_neutrality_8(formula):
    charge_neutral_count = 0
    comp = mg.Composition(formula)
    reduce_formula = comp.get_el_amt_dict()
    list_of_elements = list(reduce_formula.keys())
    stoichs = list(
                np.array(list(reduce_formula.values())).astype(np.int32)[:,np.newaxis]
            )
    max_num = max(reduce_formula.values())
    for element in reduce_formula.keys():
        print(len(smact.Element(element).oxidation_states), end = ",")

    for i, ele_a in enumerate(list_of_elements):
        for ox_a in smact.Element(ele_a).oxidation_states:
            for j, ele_b in enumerate(list_of_elements[i+1:]):
                for ox_b in smact.Element(ele_b).oxidation_states:
                    for k, ele_c in enumerate(list_of_elements[i+j+2:]):
                        for ox_c in smact.Element(ele_c).oxidation_states:
                            for m, ele_d in enumerate(list_of_elements[i+j+k+3:]):
                                for ox_d in smact.Element(ele_d).oxidation_states:
                                    for n, ele_e in enumerate(list_of_elements[i+j+k+m+4:]):
                                        for ox_e in smact.Element(ele_e).oxidation_states:
                                            for p, ele_f in enumerate(list_of_elements[i+j+k+m+n+5:]):
                                                for ox_f in smact.Element(ele_f).oxidation_states:
                                                    for q, ele_g in enumerate(list_of_elements[i+j+k+m+n+p+6:]):
                                                        for ox_g in smact.Element(ele_g).oxidation_states:
                                                            for s, ele_h in enumerate(list_of_elements[i+j+k+m+n+p+q+7:]):
                                                                for ox_h in smact.Element(ele_h).oxidation_states:
                                                                    # Checks if the combination is charge neutral before printing it out! #                        
                                                                    cn_e, cn_r = neutral_ratios([ox_a, ox_b, ox_c, ox_d, ox_e, ox_f, ox_g, ox_h], stoichs = stoichs, threshold = int(max_num))
                                                                    
                                                                    if cn_e:
                                                                        for num in cn_r:
                                                                            if tuple(reduce_formula.values()) == num:
                                                                                return True

                                                                            # print(cn_e)
                                                                            # print(cn_r)
                                                                            # print(ox_a, ox_b, ox_c)
                                                                            # charge_neutral_count = charge_neutral_count + 1
                                                                            # print('{0:3s}  {1:3s}  {2:3s}'.format(ele_a, ele_b, ele_c))
    print('Number of combinations = {0}'.format(charge_neutral_count))
    print("--- {0} seconds to run ---".format(time.time() - start_time)) 
    return False
Exemplo n.º 29
0
def get_comp_from_coords(coords, tern_axes=['Ca', 'Al', 'Ba'], scale=1):
    if len(coords) == 2:
        a, b = coords
        c = scale - a - b
        coords = (a, b, c)
    # else:
    # a,b,c = coords

    oxides = {
        'Ba': 'BaO',
        'Ca': 'CaO',
        'Al': 'Al2O3',
        'B': 'B2O3',
        'Mg': 'MgO',
        'Sr': 'SrO'
    }
    formula = ''.join(
        ['({}){}'.format(oxides[m], amt) for m, amt in zip(tern_axes, coords)])
    return mg.Composition(formula)
Exemplo n.º 30
0
 def __call__(self, formulas):
     if isinstance(formulas, str):
         formulas = [formulas]
     reduce_forms = []
     for i, formula in enumerate(formulas):
         comp = mg.Composition(formula)
         reduce_form = comp.get_el_amt_dict()
         reduce_forms.append(reduce_form)
     atom2vec = []
     for ind, formula in enumerate(reduce_forms):
         matrix = 0
         keys = formula.keys()
         for symbols in keys:
             symbols_index = list(self.atom).index(symbols)
             matrix += self.atom_fec[symbols_index] * float(
                 formula[symbols])
         atom2vec.append(matrix[np.newaxis, :])
     atom2vecs = np.concatenate(atom2vec, axis=0)
     return atom2vecs