Exemplo n.º 1
0
def calcTension(energy_data, verbose=False):
    dE1 = energy_data[:, 1] - energy_data[:, 0]
    dE2 = energy_data[:, 2] - energy_data[:, 0]
    BdE1 = dE1 / kTkJmol
    BdE2 = dE2 / kTkJmol

    nstates = 2
    nframes = len(dE1)
    u_kln = np.zeros([nstates, nstates, nframes], np.float64)
    u_kln[0, 1, :] = BdE1
    u_kln[1, 0, :] = BdE2

    N_k = np.zeros([nstates], np.int32)  # number of uncorrelated samples
    for k in range(nstates):
        [nequil, g, Neff_max] = timeseries.detectEquilibration(u_kln[k, k, :])
        indices = timeseries.subsampleCorrelatedData(u_kln[k, k, :], g=g)
        N_k[k] = len(indices)
        u_kln[k, :, 0:N_k[k]] = u_kln[k, :, indices].T
    if verbose:
        print("...found {} uncorrelated samples out of {} total samples...".
              format(N_k, nframes))

    if verbose: print("=== Computing free energy differences ===")
    mbar = MBAR(u_kln, N_k)
    [DeltaF_ij, dDeltaF_ij, Theta_ij] = mbar.getFreeEnergyDifferences()

    tension = DeltaF_ij[
        0,
        1] / da * 1e18 * kT  #(in J/m^2). note da already has a factor of two for the two areas!
    tensionError = dDeltaF_ij[0, 1] / da * 1e18 * kT
    if verbose:
        print('tension (pymbar): {} +/- {}N/m'.format(tension, tensionError))

    return tension, tensionError
Exemplo n.º 2
0
def test_mbar_computeMultipleExpectations():
    """Can MBAR calculate E(u_kn)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        A = np.zeros([2, len(x_n)])
        A[0, :] = x_n
        A[1, :] = x_n**2
        state = 1
        results = mbar.computeMultipleExpectations(A,
                                                   u_kn[state, :],
                                                   return_dict=True)
        mu_t, sigma_t = mbar.computeMultipleExpectations(A,
                                                         u_kn[state, :],
                                                         return_dict=False)
        mu = results['mu']
        sigma = results['sigma']
        eq(mu, mu_t)
        eq(sigma, sigma_t)
        mu0 = test.analytical_observable(observable='position')[state]
        mu1 = test.analytical_observable(observable='position^2')[state]
        z = (mu0 - mu[0]) / sigma[0]
        eq(z / z_scale_factor, 0 * z, decimal=0)
        z = (mu1 - mu[1]) / sigma[1]
        eq(z / z_scale_factor, 0 * z, decimal=0)
Exemplo n.º 3
0
def test_mbar_computePMF():

    """ testing computePMF """

    name, test = generate_ho()
    x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
    mbar = MBAR(u_kn,N_k)
    #do a 1d PMF of the potential in the 3rd state:
    refstate = 2
    dx = 0.25
    xmin = test.O_k[refstate] - 1
    xmax = test.O_k[refstate] + 1
    within_bounds = (x_n >= xmin) & (x_n < xmax)
    bin_centers = dx*np.arange(np.int(xmin/dx),np.int(xmax/dx)) + dx/2
    bin_n = np.zeros(len(x_n),int)
    bin_n[within_bounds] = 1 + np.floor((x_n[within_bounds]-xmin)/dx)
    # 0 is reserved for samples outside the domain.  We will ignore this state
    range = np.max(bin_n)+1
    results = mbar.computePMF(u_kn[refstate,:], bin_n, range, uncertainties = 'from-specified', pmf_reference = 1)
    f_i = results['f_i']
    df_i = results['df_i']
    f0_i = 0.5*test.K_k[refstate]*(bin_centers-test.O_k[refstate])**2
    f_i, df_i = f_i[2:], df_i[2:] # first state is ignored, second is zero, with zero uncertainty
    normf0_i = f0_i[1:] - f0_i[0] # normalize to first state
    z = (f_i - normf0_i) / df_i
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 4
0
    def sqdeltaW(self, mu_VLE, eps_scaled):
        '''
        Computes the square difference between the sum of the weights in the
        vapor and liquid phases.
        Stores the optimal reduced free energy as f_k_guess for future iterations
        Stores mbar, sumWliq, and sumWvap for computing VLE properties if converged
        '''

        nTsim, U_flat, Nmol_flat, Ncut, f_k_guess, Temp_VLE, u_kn_all, N_k_all = self.nTsim, self.U_flat, self.Nmol_flat, self.Ncut, self.f_k_guess, self.Temp_VLE, self.u_kn_all, self.N_k_all

        for jT, (Temp, mu) in enumerate(zip(Temp_VLE, mu_VLE)):

            u_kn_all[nTsim + jT, :] = self.U_to_u(eps_scaled * U_flat, Temp,
                                                  mu, Nmol_flat)

        mbar = MBAR(u_kn_all, N_k_all, initial_f_k=f_k_guess)

        sumWliq = np.sum(mbar.W_nk[:, nTsim:][Nmol_flat > Ncut], axis=0)
        sumWvap = np.sum(mbar.W_nk[:, nTsim:][Nmol_flat <= Ncut], axis=0)
        sqdeltaW_VLE = (sumWliq - sumWvap)**2

        ### Store previous solutions to speed-up future convergence of MBAR
        Deltaf_ij = mbar.getFreeEnergyDifferences(return_theta=False)[0]
        self.f_k_guess = Deltaf_ij[0, :]
        self.mbar, self.sumWliq, self.sumWvap = mbar, sumWliq, sumWvap

        return sqdeltaW_VLE
Exemplo n.º 5
0
def calc_df(u_kln):
    """
    u_kln should be (nstates) x (nstates) x (nframes)
    note that u_kln should be normalized by kT already
    where each element is 
        a config from frame `n` of a trajectory conducted with state `k`
        with energy recalculated using parameters of state `l`
    """
    dims = u_kln.shape
    if dims[0] != dims[1]:
        raise ValueError(
            "dimensions {} of u_kln should be square in the first two indices".
            format(dims))
    nstates = dims[0]

    N_k = np.zeros([nstates], np.int32)  # number of uncorrelated samples
    for k in range(nstates):
        [nequil, g, Neff_max] = timeseries.detectEquilibration(u_kln[k, k, :])
        indices = timeseries.subsampleCorrelatedData(u_kln[k, k, :], g=g)
        N_k[k] = len(indices)
        u_kln[k, :, 0:N_k[k]] = u_kln[k, :, indices].T
    # Compute free energy differences and statistical uncertainties
    mbar = MBAR(u_kln, N_k)
    [DeltaF_ij, dDeltaF_ij, Theta_ij] = mbar.getFreeEnergyDifferences()

    # save data?

    return DeltaF_ij, dDeltaF_ij
Exemplo n.º 6
0
def test_mbar_computePerturbedFreeEnergeies():
    """ testing computePerturbedFreeEnergies """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        numN = np.sum(N_k[:2])
        mbar = MBAR(u_kn[:2, :numN],
                    N_k[:2])  # only do MBAR with the first and last set
        results = mbar.computePerturbedFreeEnergies(u_kn[2:, :numN],
                                                    return_dict=True)
        f_t, df_t = mbar.computePerturbedFreeEnergies(u_kn[2:, :numN],
                                                      return_dict=False)
        fe = results['Delta_f']
        fe_sigma = results['dDelta_f']

        eq(fe, f_t)
        eq(fe_sigma, df_t)

        fe, fe_sigma = fe[0, 1:], fe_sigma[0, 1:]

        print(fe, fe_sigma)
        fe0 = test.analytical_free_energies()[2:]
        fe0 = fe0[1:] - fe0[0]

        z = (fe - fe0) / fe_sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 7
0
def test_mbar_computeEntropyAndEnthalpy():
    """Can MBAR calculate f_k, <u_k> and s_k ??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        results = mbar.computeEntropyAndEnthalpy(u_kn)
        f_ij = results['Delta_f']
        df_ij = results['dDelta_f']
        u_ij = results['Delta_u']
        du_ij = results['dDelta_u']
        s_ij = results['Delta_s']
        ds_ij = results['dDelta_s']

        fa = test.analytical_free_energies()
        ua = test.analytical_observable('potential energy')
        sa = test.analytical_entropies()

        fa_ij = np.array(np.matrix(fa) - np.matrix(fa).transpose())
        ua_ij = np.array(np.matrix(ua) - np.matrix(ua).transpose())
        sa_ij = np.array(np.matrix(sa) - np.matrix(sa).transpose())

        z = convert_to_differences(f_ij, df_ij, fa)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
        z = convert_to_differences(u_ij, du_ij, ua)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
        z = convert_to_differences(s_ij, ds_ij, sa)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
Exemplo n.º 8
0
def test_mbar_computePMF():
    """ testing computePMF """

    name, test = generate_ho()
    x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
    mbar = MBAR(u_kn, N_k)
    #do a 1d PMF of the potential in the 3rd state:
    refstate = 2
    dx = 0.25
    xmin = test.O_k[refstate] - 1
    xmax = test.O_k[refstate] + 1
    within_bounds = (x_n >= xmin) & (x_n < xmax)
    bin_centers = dx * np.arange(np.int(xmin / dx), np.int(xmax / dx)) + dx / 2
    bin_n = np.zeros(len(x_n), int)
    bin_n[within_bounds] = 1 + np.floor((x_n[within_bounds] - xmin) / dx)
    # 0 is reserved for samples outside the domain.  We will ignore this state
    range = np.max(bin_n) + 1
    results = mbar.computePMF(u_kn[refstate, :],
                              bin_n,
                              range,
                              uncertainties='from-specified',
                              pmf_reference=1)
    f_i = results['f_i']
    df_i = results['df_i']
    f0_i = 0.5 * test.K_k[refstate] * (bin_centers - test.O_k[refstate])**2
    f_i, df_i = f_i[2:], df_i[
        2:]  # first state is ignored, second is zero, with zero uncertainty
    normf0_i = f0_i[1:] - f0_i[0]  # normalize to first state
    z = (f_i - normf0_i) / df_i
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 9
0
    def run_mbar(self, test_overlap = True):
        r"""Runs MBAR free energy estimate """
        MBAR_obj = MBAR(self._u_kln, self._N_k, verbose=True)
        self._f_k = MBAR_obj.f_k
        try:
            (deltaF_ij, dDeltaF_ij, theta_ij) = MBAR_obj.getFreeEnergyDifferences()
        except:
            (deltaF_ij, dDeltaF_ij, theta_ij) = MBAR_obj.getFreeEnergyDifferences(return_theta=True)
        self._deltaF_mbar = deltaF_ij[0, self._lambda_array.shape[0]-1]
        self._dDeltaF_mbar = dDeltaF_ij[0, self._lambda_array.shape[0]-1]
        self._pmf_mbar = numpy.zeros(shape=(self._lambda_array.shape[0], 3))
        self._pmf_mbar[:, 0] = self._lambda_array
        self._pmf_mbar[:, 1] = self._f_k
        self._pmf_mbar[:,2] = dDeltaF_ij[0]
        self._pairwise_F = numpy.zeros(shape=(self._lambda_array.shape[0]-1,4))
        self._pairwise_F[:,0] = self._lambda_array[:-1]
        self._pairwise_F[:,1] = self._lambda_array[1:]
        self._pairwise_F[:,2] = numpy.diag(deltaF_ij,1)
        self._pairwise_F[:,3] = numpy.diag(dDeltaF_ij,1)


        ##testing data overlap:
        if test_overlap:
            overlap_matrix = MBAR_obj.computeOverlap()
            self._overlap_matrix = overlap_matrix[2]
Exemplo n.º 10
0
 def compute_mbar(self):
     if 'method' in self.kwargs:
         method = self.kwargs['method']
     else:
         method = 'adaptive'
     if self.mbar_f_ki is not None:
         self.mbar = MBAR(self.u_kln,
                          self.N_k,
                          verbose=self.verbose,
                          method=method,
                          initial_f_k=self.mbar_f_ki,
                          subsampling_protocol=[{
                              'method': 'L-BFGS-B',
                              'options': {
                                  'disp': self.verbose
                              }
                          }],
                          subsampling=1)
     else:
         self.mbar = MBAR(self.u_kln,
                          self.N_k,
                          verbose=self.verbose,
                          method=method,
                          subsampling_protocol=[{
                              'method': 'L-BFGS-B',
                              'options': {
                                  'disp': self.verbose
                              }
                          }],
                          subsampling=1)
     self.mbar_ready = True
Exemplo n.º 11
0
    def build_MBAR_sim(self):
        '''
        Creates an instance of the MBAR object for just the simulated state points
        N_k: contains the number of snapshots from each state point simulated
        Nmol_kn: contains all of the Number of molecules in 1-d array
        u_kn_sim: contains all the reduced potential energies just for the simulated points
        f_k_sim: the converged reduced free energies for each simulated state point (used as initial guess for non-simulated state points)
        '''

        Temp_sim, mu_sim, nSnapshots, Nmol_flat, U_flat = self.Temp_sim, self.mu_sim, self.K_sim, self.Nmol_flat, self.U_flat

        N_k_sim = np.array(nSnapshots)
        sumN_k = np.sum(N_k_sim)
        #        Nmol_flat = np.array(N_data_sim).flatten()
        #        U_flat = np.array(U_data_sim).flatten()
        u_kn_sim = np.zeros([len(Temp_sim), sumN_k])

        for iT, (Temp, mu) in enumerate(zip(Temp_sim, mu_sim)):

            u_kn_sim[iT] = self.U_to_u(U_flat, Temp, mu, Nmol_flat)

        mbar_sim = MBAR(u_kn_sim, N_k_sim)

        Deltaf_ij = mbar_sim.getFreeEnergyDifferences(return_theta=False)[0]
        f_k_sim = Deltaf_ij[0, :]
        #        print(f_k_sim)

        self.u_kn_sim, self.f_k_sim, self.sumN_k, self.N_k_sim, self.mbar_sim = u_kn_sim, f_k_sim, sumN_k, N_k_sim, mbar_sim
Exemplo n.º 12
0
def test_mbar_computeOverlap():

    # tests with identical states, which gives analytical results.

    d = len(N_k)
    even_O_k = 2.0*np.ones(d)
    even_K_k = 0.5*np.ones(d)
    even_N_k = 100*np.ones(d)
    name, test = generate_ho(O_k = even_O_k, K_k = even_K_k)
    x_n, u_kn, N_k_output, s_n = test.sample(even_N_k, mode='u_kn')
    mbar = MBAR(u_kn, even_N_k)

    overlap_scalar, eigenval, O = mbar.computeOverlap()

    reference_matrix = np.matrix((1.0/d)*np.ones([d,d]))
    reference_eigenvalues = np.zeros(d)
    reference_eigenvalues[0] = 1.0
    reference_scalar = np.float64(1.0)

    eq(O, reference_matrix, decimal=precision)
    eq(eigenval, reference_eigenvalues, decimal=precision)
    eq(overlap_scalar, reference_scalar, decimal=precision)

    # test of more straightforward examples
    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        mbar = MBAR(u_kn, N_k)
        overlap_scalar, eigenval, O = mbar.computeOverlap()

        # rows of matrix should sum to one
        sumrows = np.array(np.sum(O,axis=1))
        eq(sumrows, np.ones(np.shape(sumrows)), decimal=precision)
        eq(eigenval[0], np.float64(1.0), decimal=precision)
Exemplo n.º 13
0
    def update_logZ_with_mbar(self):
        """
        Use MBAR to update logZ estimates.
        """
        if not self.ncfile:
            raise Exception("Cannot update logZ using MBAR since no NetCDF file is storing history.")

        if not self.sampler.update_scheme == 'global-jump':
            raise Exception("Only global jump is implemented right now.")

        if not self.ncfile:
            raise Exception("Must have a storage file attached to use MBAR updates")

        # Extract relative energies.
        if self.verbose:
            print('Updating logZ estimate with MBAR...')
        initial_time = time.time()
        from pymbar import MBAR
        #first = int(self.iteration / 2)
        first = 0
        u_kn = np.array(self.ncfile.variables['u_k'][first:,:]).T
        [N_k, bins] = np.histogram(self.ncfile.variables['state_index'][first:], bins=(np.arange(self.sampler.nstates+1) - 0.5))
        mbar = MBAR(u_kn, N_k)
        Deltaf_ij, dDeltaf_ij, Theta_ij = mbar.getFreeEnergyDifferences(compute_uncertainty=True, uncertainty_method='approximate')
        self.logZ[:] = -mbar.f_k[:]
        self.logZ -= self.logZ[0]
        final_time = time.time()
        elapsed_time = final_time - initial_time
        self._timing['MBAR time'] = elapsed_time
        if self.verbose:
            print('MBAR time    %8.3f s' % elapsed_time)
Exemplo n.º 14
0
def test_mbar_computeEntropyAndEnthalpy():

    """Can MBAR calculate f_k, <u_k> and s_k ??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        f_ij, df_ij, u_ij, du_ij, s_ij, ds_ij = mbar.computeEntropyAndEnthalpy(u_kn)

        fa = test.analytical_free_energies()
        ua = test.analytical_observable('potential energy')
        sa = test.analytical_entropies()

        fa_ij = np.array(np.matrix(fa) - np.matrix(fa).transpose())
        ua_ij = np.array(np.matrix(ua) - np.matrix(ua).transpose())
        sa_ij = np.array(np.matrix(sa) - np.matrix(sa).transpose())

        z = convert_to_differences(f_ij,df_ij,fa)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
        z = convert_to_differences(u_ij,du_ij,ua)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
        z = convert_to_differences(s_ij,ds_ij,sa)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
Exemplo n.º 15
0
    def calc_abs_press_int(self,show_plot=True):
        '''
        Fits ln(Xi) with respect to N for low-density vapor
        '''
        Temp_sim, u_kn_sim,f_k_sim,sumN_k = self.Temp_sim, self.u_kn_sim,self.f_k_sim,self.sumN_k
        nTsim, U_flat, Nmol_flat,Ncut = self.nTsim, self.U_flat, self.Nmol_flat, self.Ncut
        
        Temp_IG = np.min(Temp_sim[self.mu_sim == self.mu_sim.min()]) 
#        print(Temp_IG)

        mu_IG = np.linspace(2.*self.mu_opt[self.Temp_VLE==Temp_IG],5.*self.mu_opt[self.Temp_VLE==Temp_IG],10)

        N_k_all = self.K_sim[:]
        N_k_all.extend([0]*len(mu_IG))

        u_kn_IG = np.zeros([len(mu_IG),sumN_k])
        u_kn_all = np.concatenate((u_kn_sim,u_kn_IG))
        
        f_k_guess = np.concatenate((f_k_sim,np.zeros(len(mu_IG))))

        for jT, mu in enumerate(mu_IG):
            
            u_kn_all[nTsim+jT,:] = self.U_to_u(U_flat,Temp_IG,mu,Nmol_flat)

        mbar = MBAR(u_kn_all,N_k_all,initial_f_k=f_k_guess)
                
        sumW_IG = np.sum(mbar.W_nk[:,nTsim:][Nmol_flat<Ncut],axis=0)
         
        Nmol_IG = np.sum(mbar.W_nk[:,nTsim:][Nmol_flat<Ncut].T*Nmol_flat[Nmol_flat<Ncut],axis=1)/sumW_IG
#        print(sumW_IG,Nmol_IG)
#        print(mbar.W_nk[:,nTsim:][Nmol_flat<Ncut].T)
#        print(mbar.W_nk[:,nTsim:][Nmol_flat<Ncut].T*Nmol_flat[Nmol_flat<Ncut])
        ### Store previous solutions to speed-up future convergence of MBAR
        Deltaf_ij = mbar.getFreeEnergyDifferences(return_theta=False)[0]
        f_k_IG = Deltaf_ij[nTsim:,0]
#        print(f_k_sim,f_k_guess[:nTsim+1],Deltaf_ij[0,:nTsim],f_k_IG)#,Nmol_IG,press_IG,Psat)

        fit=stats.linregress(Nmol_IG[mu_IG<2.*self.mu_sim.min()],f_k_IG[mu_IG<2.*self.mu_sim.min()])
        
        if show_plot:
            
            Nmol_plot = np.linspace(Nmol_IG.min(),Nmol_IG.max(),50)
            lnXi_plot = fit.intercept + fit.slope*Nmol_plot

            plt.figure(figsize=[6,6])
            plt.plot(Nmol_IG,f_k_IG,'bo',mfc='None',label='MBAR-GCMC')
            plt.plot(Nmol_plot,lnXi_plot,'k-',label='Linear fit')
            plt.xlabel('Number of Molecules')
            plt.ylabel(r'$\ln(\Xi)$')
            plt.legend()
            plt.show()
            
            print('Slope for ideal gas is 1, actual slope is: '+str(fit.slope))
            print('Intercept for absolute pressure is:'+str(fit.intercept))
        
        self.abs_press_int, self.Temp_IG, self.f_k_IG, self.Nmol_IG = fit.intercept, Temp_IG, f_k_IG, Nmol_IG
Exemplo n.º 16
0
 def run_mbar(self):
     r"""Runs MBAR free energy estimate """
     MBAR_obj = MBAR(self._u_kln, self._N_k, verbose=True)
     self._f_k = MBAR_obj.f_k
     (deltaF_ij, dDeltaF_ij, theta_ij) = MBAR_obj.getFreeEnergyDifferences()
     self._deltaF_mbar = deltaF_ij[0, self._lambda_array.shape[0]-1]
     self._dDeltaF_mbar = dDeltaF_ij[0, self._lambda_array.shape[0]-1]
     self._pmf_mbar = np.zeros(shape=(self._lambda_array.shape[0], 2))
     self._pmf_mbar[:, 0] = self._lambda_array
     self._pmf_mbar[:, 1] = self._f_k
Exemplo n.º 17
0
def _calc_singleLP_exTI_pred_mbar(Es, dEs, LPs_pred, nfr, T=300):
    assert Es.shape == dEs.shape
    kT = kb * T
    mbar = MBAR(Es / kT, nfr)
    w = mbar.getWeights()
    wt = w.T
    dgdl_int = []
    for i in range(len(LPs_pred)):
        dgdl_int.append(np.dot(wt[i], dEs[i]))
    return np.array(dgdl_int)
Exemplo n.º 18
0
def test_mbar_getWeights():
    """ testing getWeights """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        mbar = MBAR(u_kn, N_k)
        # rows should be equal to zero
        W = mbar.getWeights()
        sumrows = np.sum(W, axis=0)
        eq(sumrows, np.ones(len(sumrows)), decimal=precision)
Exemplo n.º 19
0
def test_mbar_getWeights():

    """ testing getWeights """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        mbar = MBAR(u_kn, N_k)
        # rows should be equal to zero
        W = mbar.getWeights()
        sumrows = np.sum(W,axis=0)
        eq(sumrows, np.ones(len(sumrows)), decimal=precision)
Exemplo n.º 20
0
def test_mbar_computeExpectations_position_differences():
    """Can MBAR calculate E(x_n)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu_ij, sigma_ij = mbar.computeExpectations(x_n, output='differences')
        mu0 = test.analytical_observable(observable='position')
        z = convert_to_differences(mu_ij, sigma_ij, mu0)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
Exemplo n.º 21
0
def test_mbar_computeExpectationsInner():
    """Can MBAR calculate general expectations inner code (note: this just tests completion)"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        A_in = np.array([x_n, x_n**2, x_n**3])
        u_n = u_kn[:2, :]
        state_map = np.array([[0, 0], [1, 0], [2, 0], [2, 1]], int)
        _ = mbar.computeExpectationsInner(A_in, u_n, state_map)
Exemplo n.º 22
0
def test_mbar_computeExpectationsInner():

    """Can MBAR calculate general expectations inner code (note: this just tests completion)"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        A_in = np.array([x_n, x_n ** 2, x_n ** 3])
        u_n = u_kn[:2,:]
        state_map = np.array([[0,0],[1,0],[2,0],[2,1]],int)
        [A_i, d2A_ij] = mbar.computeExpectationsInner(A_in, u_n, state_map)
Exemplo n.º 23
0
def test_mbar_computeExpectations_position_averages():
    """Can MBAR calculate E(x_n)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu, sigma = mbar.computeExpectations(x_n)
        mu0 = test.analytical_observable(observable='position')

        z = (mu0 - mu) / sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 24
0
def test_mbar_computeExpectations_position_differences():

    """Can MBAR calculate E(x_n)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu_ij, sigma_ij = mbar.computeExpectations(x_n, output = 'differences')
        mu0 = test.analytical_observable(observable = 'position')
        z = convert_to_differences(mu_ij, sigma_ij, mu0)
        eq(z / z_scale_factor, np.zeros(np.shape(z)), decimal=0)
def test_exponential_mbar_xkn_squared():
    """Exponential Distribution Test: can MBAR calculate E(x_kn^2)"""
    test = exponential_distributions.ExponentialTestCase(rates)
    x_kn, u_kln, N_k_output = test.sample(N_k)

    eq(N_k, N_k_output)

    mbar = MBAR(u_kln, N_k)

    mu, sigma = mbar.computeExpectations(x_kn ** 2)
    mu0 = test.analytical_x_squared()

    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 26
0
def test_mbar_computeExpectations_position_averages():

    """Can MBAR calculate E(x_n)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu, sigma = mbar.computeExpectations(x_n)
        mu0 = test.analytical_observable(observable = 'position')

        z = (mu0 - mu) / sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 27
0
def test_mbar_computeExpectations_potential():
    """Can MBAR calculate E(u_kn)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu, sigma = mbar.computeExpectations(u_kn, state_dependent=True)
        mu0 = test.analytical_observable(observable='potential energy')
        print(mu)
        print(mu0)
        z = (mu0 - mu) / sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_exponential_mbar_xkn_squared():
    """Harmonic Oscillators Test: can MBAR calculate E(x_kn^2)??"""
    test = harmonic_oscillators.HarmonicOscillatorsTestCase(O_k, k_k)
    x_kn, u_kln, N_k_output = test.sample(N_k)

    eq(N_k, N_k_output)

    mbar = MBAR(u_kln, N_k)

    mu, sigma = mbar.computeExpectations(x_kn ** 2)
    mu0 = test.analytical_x_squared()

    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 29
0
def test_mbar_computeEffectiveSampleNumber():
    """ testing computeEffectiveSampleNumber """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)

        # one mathematical effective sample numbers should be between N_k and sum_k N_k
        N_eff = mbar.computeEffectiveSampleNumber()
        sumN = np.sum(N_k)
        assert all(N_eff > N_k)
        assert all(N_eff < sumN)
Exemplo n.º 30
0
def test_mbar_computeEffectiveSampleNumber():
    """ testing computeEffectiveSampleNumber """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)

        # one mathematical effective sample numbers should be between N_k and sum_k N_k
        N_eff = mbar.computeEffectiveSampleNumber()
        sumN = np.sum(N_k)
        assert all(N_eff > N_k)
        assert all(N_eff < sumN)
Exemplo n.º 31
0
    def gather_dg(self, u_kln, nstates):
        # Subsample data to extract uncorrelated equilibrium timeseries
        N_k = np.zeros([nstates], np.int32)  # number of uncorrelated samples
        for k in range(nstates):
            [_, g, __] = timeseries.detectEquilibration(u_kln[k, k, :])
            indices = timeseries.subsampleCorrelatedData(u_kln[k, k, :], g=g)
            N_k[k] = len(indices)
            u_kln[k, :, 0:N_k[k]] = u_kln[k, :, indices].T
        # Compute free energy differences and statistical uncertainties
        mbar = MBAR(u_kln, N_k)
        [DeltaF_ij, dDeltaF_ij, _] = mbar.getFreeEnergyDifferences()
        print("Number of uncorrelated samples per state: {}".format(N_k))

        return DeltaF_ij, dDeltaF_ij
def test_exponential_mbar_free_energies():
    """Exponential Distribution Test: can MBAR calculate correct free energy differences?"""
    test = exponential_distributions.ExponentialTestCase(rates)
    x_kn, u_kln, N_k_output = test.sample(N_k, mode='u_kln')
    eq(N_k, N_k_output)

    mbar = MBAR(u_kln, N_k)
    fe, fe_sigma = mbar.getFreeEnergyDifferences()
    fe, fe_sigma = fe[0,1:], fe_sigma[0,1:]

    fe0 = test.analytical_free_energies()
    fe0 = fe0[1:] - fe0[0]

    z = (fe - fe0) / fe_sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 33
0
def test_mbar_computeExpectations_position2():
    """Can MBAR calculate E(x_n^2)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        results = mbar.computeExpectations(x_n**2, return_dict=True)
        mu = results['mu']
        sigma = results['sigma']
        mu0 = test.analytical_observable(observable='position^2')

        z = (mu0 - mu) / sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 34
0
def test_mbar_computeExpectations_potential():

    """Can MBAR calculate E(u_kn)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        mu, sigma = mbar.computeExpectations(u_kn, state_dependent = True)
        mu0 = test.analytical_observable(observable = 'potential energy')
        print(mu)
        print(mu0)
        z = (mu0 - mu) / sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_harmonic_oscillators_mbar_free_energies():
    """Harmonic Oscillators Test: can MBAR calculate correct free energy differences?"""
    test = harmonic_oscillators.HarmonicOscillatorsTestCase(O_k, k_k)
    x_kn, u_kln, N_k_output = test.sample(N_k)

    eq(N_k, N_k_output)

    mbar = MBAR(u_kln, N_k)
    fe, fe_sigma = mbar.getFreeEnergyDifferences()
    fe, fe_sigma = fe[0,1:], fe_sigma[0,1:]

    fe0 = test.analytical_free_energies()
    fe0 = fe0[1:] - fe0[0]

    z = (fe - fe0) / fe_sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 36
0
def initialize_MBAR(ncfile, u_kln=None, N_k=None):
    """
    Initialize MBAR for Free Energy and Enthalpy estimates, this may take a while.

    ncfile : NetCDF
       Input YANK netcdf file
    u_kln : array of numpy.float64, optional, default=None
       Reduced potential energies of the replicas; if None, will be extracted from the ncfile
    N_k : array of ints, optional, default=None
       Number of samples drawn from each kth replica; if None, will be extracted from the ncfile

    TODO
    ----
    * Ensure that the u_kln and N_k are decorrelated if not provided in this function

    """

    if u_kln is None or N_k is None:
        (u_kln, N_k, u_n) = extract_ncfile_energies(ncfile)

    # Initialize MBAR (computing free energy estimates, which may take a while)
    logger.info("Computing free energy differences...")
    mbar = MBAR(u_kln, N_k)

    return mbar
def test_exponential_mbar_free_energies():
    """Exponential Distribution Test: can MBAR calculate correct free energy differences?"""
    test = exponential_distributions.ExponentialTestCase(rates)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)
    
    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)
    fe, fe_sigma = mbar.getFreeEnergyDifferences()
    fe, fe_sigma = fe[0], fe_sigma[0]

    fe0 = test.analytical_free_energies()

    z = (fe - fe0) / fe_sigma
    z = z[1:]  # First component is undetermined.
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 38
0
def simulate_protocol(lambdas_k, n_samples_per_window=100, seed=None):
    """Generate samples from each lambda window, plug into MBAR"""
    O_k, K_k = poorly_spaced_path(lambdas_k)
    testsystem = HarmonicOscillatorsTestCase(O_k, K_k)
    N_k = [n_samples_per_window] * len(O_k)
    xs, u_kn, N_k, s_n = testsystem.sample(N_k, seed=seed)
    mbar = MBAR(u_kn, N_k)
    return mbar
Exemplo n.º 39
0
def test_mbar_free_energies():
    """Can MBAR calculate moderately correct free energy differences?"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)

        fe, fe_sigma, Theta_ij = mbar.getFreeEnergyDifferences()
        fe, fe_sigma = fe[0, 1:], fe_sigma[0, 1:]

        fe0 = test.analytical_free_energies()
        fe0 = fe0[1:] - fe0[0]

        z = (fe - fe0) / fe_sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_harmonic_oscillators_mbar_free_energies():
    """Harmonic Oscillators Test: can MBAR calculate correct free energy differences?"""
    test = harmonic_oscillators.HarmonicOscillatorsTestCase(O_k, k_k)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)
    
    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)
    fe, fe_sigma = mbar.getFreeEnergyDifferences()
    fe, fe_sigma = fe[0], fe_sigma[0]

    fe0 = test.analytical_free_energies()

    z = (fe - fe0) / fe_sigma
    z = z[1:]  # First component is undetermined.
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 41
0
def test_mbar_free_energies():

    """Can MBAR calculate moderately correct free energy differences?"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)

        fe, fe_sigma, Theta_ij = mbar.getFreeEnergyDifferences()
        fe, fe_sigma = fe[0,1:], fe_sigma[0,1:]

        fe0 = test.analytical_free_energies()
        fe0 = fe0[1:] - fe0[0]

        z = (fe - fe0) / fe_sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 42
0
def test_mbar_computePerturbedFreeEnergeies():

    """ testing computePerturbedFreeEnergies """

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        numN = np.sum(N_k[:2])
        mbar = MBAR(u_kn[:2,:numN], N_k[:2])  # only do MBAR with the first and last set
        fe, fe_sigma = mbar.computePerturbedFreeEnergies(u_kn[2:,:numN])
        fe, fe_sigma = fe[0,1:], fe_sigma[0,1:]

        print(fe, fe_sigma)
        fe0 = test.analytical_free_energies()[2:]
        fe0 = fe0[1:] - fe0[0]

        z = (fe - fe0) / fe_sigma
        eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_exponential_mbar__xkn():
    """Harmonic Oscillators Test: can MBAR calculate E(x_kn)??"""
    test = harmonic_oscillators.HarmonicOscillatorsTestCase(O_k, k_k)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)

    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)

    x_kn = convert_xn_to_x_kn(x_n)

    x_kn = x_kn.values  # Convert to numpy for MBAR
    x_kn[np.isnan(x_kn)] = 0.0  # Convert nans to 0.0

    mu, sigma = mbar.computeExpectations(x_kn)
    mu0 = test.analytical_means()

    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 44
0
def test_mbar_computeMultipleExpectations():

    """Can MBAR calculate E(u_kn)??"""

    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        eq(N_k, N_k_output)
        mbar = MBAR(u_kn, N_k)
        A = np.zeros([2,len(x_n)])
        A[0,:] = x_n
        A[1,:] = x_n**2
        state = 1
        mu, sigma, covariances = mbar.computeMultipleExpectations(A,u_kn[state,:])
        mu0 = test.analytical_observable(observable = 'position')[state]
        mu1 = test.analytical_observable(observable = 'position^2')[state]
        z = (mu0 - mu[0]) / sigma[0]
        eq(z / z_scale_factor, 0*z, decimal=0)
        z = (mu1 - mu[1]) / sigma[1]
        eq(z / z_scale_factor, 0*z, decimal=0)
def test_exponential_mbar_xkn():
    """Exponential Distribution Test: can MBAR calculate E(x_kn)?"""
    test = exponential_distributions.ExponentialTestCase(rates)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)
    
    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)
    
    x_kn = convert_xn_to_x_kn(x_n)

    x_kn = x_kn.values  # Convert to numpy for MBAR
    x_kn[np.isnan(x_kn)] = 0.0  # Convert nans to 0.0

    mu, sigma = mbar.computeExpectations(x_kn)
    mu0 = test.analytical_means()
    
    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_exponential_mbar_xkn_squared():
    """Exponential Distribution Test: can MBAR calculate E(x_kn^2)"""
    test = exponential_distributions.ExponentialTestCase(rates)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)
    
    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)
    
    x_kn = convert_xn_to_x_kn(x_n) ** 2.0

    x_kn = x_kn.values  # Convert to numpy for MBAR
    x_kn[np.isnan(x_kn)] = 0.0  # Convert nans to 0.0

    mu, sigma = mbar.computeExpectations(x_kn)
    mu0 = test.analytical_x_squared()
    
    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
def test_exponential_mbar_xkn_squared():
    """Harmonic Oscillators Test: can MBAR calculate E(x_kn^2)??"""
    test = harmonic_oscillators.HarmonicOscillatorsTestCase(O_k, k_k)
    x_n, u_kn, origin = test.sample(N_k)
    u_ijn, N_k_output = convert_ukn_to_uijn(u_kn)
    
    eq(N_k, N_k_output.values)

    mbar = MBAR(u_ijn.values, N_k)
    
    x_kn = convert_xn_to_x_kn(x_n) ** 2.

    x_kn = x_kn.values  # Convert to numpy for MBAR
    x_kn[np.isnan(x_kn)] = 0.0  # Convert nans to 0.0

    mu, sigma = mbar.computeExpectations(x_kn)
    mu0 = test.analytical_x_squared()
    
    z = (mu0 - mu) / sigma
    eq(z / z_scale_factor, np.zeros(len(z)), decimal=0)
Exemplo n.º 48
0
    def gather_dg(self, u_kln, nstates):
        u_kln = np.vstack(u_kln)
        # Subsample data to extract uncorrelated equilibrium timeseries
        N_k = np.zeros([nstates], np.int32)  # number of uncorrelated samples
        for k in range(nstates):
            [_, g, __] = timeseries.detectEquilibration(u_kln[k, k, :])
            indices = timeseries.subsampleCorrelatedData(u_kln[k, k, :], g=g)
            N_k[k] = len(indices)
            u_kln[k, :, 0:N_k[k]] = u_kln[k, :, indices].T
        # Compute free energy differences and statistical uncertainties
        mbar = MBAR(u_kln, N_k)
        [DeltaF_ij, dDeltaF_ij, _] = mbar.getFreeEnergyDifferences()
        logger.debug(
            "Number of uncorrelated samples per state: {}".format(N_k))
        logger.debug("Relative free energy change for {0} = {1} +- {2}".format(
            self.name, DeltaF_ij[0, nstates - 1] * self.kTtokcal,
            dDeltaF_ij[0, nstates - 1] * self.kTtokcal))

        return DeltaF_ij[0, nstates -
                         1] * self.kTtokcal, dDeltaF_ij[0, nstates -
                                                        1] * self.kTtokcal
Exemplo n.º 49
0
def test_mbar_computeOverlap():

    # tests with identical states, which gives analytical results.

    d = len(N_k)
    even_O_k = 2.0 * np.ones(d)
    even_K_k = 0.5 * np.ones(d)
    even_N_k = 100 * np.ones(d)
    name, test = generate_ho(O_k=even_O_k, K_k=even_K_k)
    x_n, u_kn, N_k_output, s_n = test.sample(even_N_k, mode='u_kn')
    mbar = MBAR(u_kn, even_N_k)

    overlap_scalar, eigenval, O = mbar.computeOverlap()

    reference_matrix = np.matrix((1.0 / d) * np.ones([d, d]))
    reference_eigenvalues = np.zeros(d)
    reference_eigenvalues[0] = 1.0
    reference_scalar = np.float64(1.0)

    eq(O, reference_matrix, decimal=precision)
    eq(eigenval, reference_eigenvalues, decimal=precision)
    eq(overlap_scalar, reference_scalar, decimal=precision)

    # test of more straightforward examples
    for system_generator in system_generators:
        name, test = system_generator()
        x_n, u_kn, N_k_output, s_n = test.sample(N_k, mode='u_kn')
        mbar = MBAR(u_kn, N_k)
        overlap_scalar, eigenval, O = mbar.computeOverlap()

        # rows of matrix should sum to one
        sumrows = np.array(np.sum(O, axis=1))
        eq(sumrows, np.ones(np.shape(sumrows)), decimal=precision)
        eq(eigenval[0], np.float64(1.0), decimal=precision)
Exemplo n.º 50
0
    def run_mbar(self, ndiscard=0, nuse=None):
        """Estimate free energies of all alchemical states.

        Parameters
        ----------
        ndiscard : int, optinoal, default=0
            number of iterations to discard to equilibration
        nuse : int, optional, default=None
            maximum number of iterations to use (after discarding)

        Returns
        -------
        
        Deltaf_ij : np.ndarray, shape=(n_states, n_states)
            The statewise free energy differences

        dDeltaf_ij : np.ndarray, shape=(n_states, n_states)
            The statewise free energy difference uncertainties

        """    
        
        u_kln_replica, u_kln, u_n = self.get_u_kln()

        u_kln_replica, u_kln, u_n, N_k, N = self.equilibrate_and_subsample(u_kln_replica, u_kln, u_n, ndiscard=ndiscard, nuse=nuse)

        logger.info("Initialing MBAR and computing free energy differences...")
        mbar = MBAR(u_kln, N_k, verbose = False, method = 'self-consistent-iteration', maximum_iterations = 50000) # use slow self-consistent-iteration (the default)

        # Get matrix of dimensionless free energy differences and uncertainty estimate.
        logger.info("Computing covariance matrix...")
        (Deltaf_ij, dDeltaf_ij) = mbar.getFreeEnergyDifferences(uncertainty_method='svd-ew')
       
        logger.info("\n%-24s %16s\n%s" % ("Deltaf_ij", "current state", pd.DataFrame(Deltaf_ij).to_string()))
        logger.info("\n%-24s %16s\n%s" % ("Deltaf_ij", "current state", pd.DataFrame(dDeltaf_ij).to_string()))        
                
        return (Deltaf_ij, dDeltaf_ij)
Exemplo n.º 51
0
    def MBAR_analysis(self, debug = False):
	"""MBAR analysis for populations and BICePs score"""
	# load necessary data first
	self.load_data()

	# Suppose the energies sampled from each simulation are u_kln, where u_kln[k,l,n] is the reduced potential energy
	#   of snapshot n \in 1,...,N_k of simulation k \in 1,...,K evaluated at reduced potential for state l.
	self.K = self.nlambda   # number of thermodynamic ensembles
	# N_k[k] will denote the number of correlated snapshots from state k
	N_k = np.array( [len(self.traj[i]['trajectory']) for i in range(self.nlambda)] )
	nsnaps = N_k.max()
	u_kln = np.zeros( (self.K, self.K, nsnaps) )
	nstates = int(self.states)
	print 'nstates', nstates
	states_kn = np.zeros( (self.K, nsnaps) )

	# Get snapshot energies rescored in the different ensembles
	"""['step', 'E', 'accept', 'state', 'sigma_noe', 'sigma_J', 'sigma_cs', 'sigma_pf''gamma']
	[int(step), float(self.E), int(accept), int(self.state), int(self.sigma_noe_index), int(self.sigma_J_index), int(self.sigma_cs_H_index), int(self.sigma_cs_Ha_index), int(self.sigma_cs_N_index), int(self.sigma_cs_Ca_index), int(self.sigma_pf_index), int(self.gamma_index)]               	"""

	for n in range(nsnaps):

  		for k in range(self.K):
    			for l in range(self.K):
				if debug:
      					print 'step', self.traj[k]['trajectory'][n][0],
      				if k==l:
          				print 'E%d evaluated in model %d'%(k,k), self.traj[k]['trajectory'][n][1],
          				u_kln[k,k,n] = self.traj[k]['trajectory'][n][1]
          			state, sigma_noe_index, sigma_J_index, sigma_cs_H_index, sigma_cs_Ha_index, sigma_cs_N_index, sigma_cs_Ca_index, sigma_pf_index, gamma_index = self.traj[k]['trajectory'][n][3:] 	# IMPORTANT: make sure the order of these parameters is the same as the way they are saved in PosteriorSampler
          			print 'state, sigma_noe_index, sigma_J_index, sigma_cs_H_index, sigma_cs_Ha_index, sigma_cs_N_index, sigma_cs_Ca_index, sigma_pf_index, gamma_index', state, sigma_noe_index, sigma_J_index, sigma_cs_H_index, sigma_cs_Ha_index, sigma_cs_N_index, sigma_cs_Ca_index, sigma_pf_index, gamma_index 
          			states_kn[k,n] = state
          			sigma_noe = self.traj[k]['allowed_sigma_noe'][sigma_noe_index]
          			sigma_J = self.traj[k]['allowed_sigma_J'][sigma_J_index]
          			sigma_cs_H = self.traj[k]['allowed_sigma_cs_H'][sigma_cs_H_index]
          			sigma_cs_Ha = self.traj[k]['allowed_sigma_cs_Ha'][sigma_cs_Ha_index]
          			sigma_cs_N = self.traj[k]['allowed_sigma_cs_N'][sigma_cs_N_index]
          			sigma_cs_Ca = self.traj[k]['allowed_sigma_cs_Ca'][sigma_cs_Ca_index]
          			sigma_pf = self.traj[k]['allowed_sigma_pf'][sigma_pf_index]
          			u_kln[k,l,n] = self.sampler[l].neglogP(0, state, sigma_noe, sigma_J, sigma_cs_H, sigma_cs_Ha, sigma_cs_N, sigma_cs_Ca, sigma_pf, gamma_index)
				if debug:
					print 'E_%d evaluated in model_%d'%(k,l), u_kln[k,l,n]


	# Initialize MBAR with reduced energies u_kln and number of uncorrelated configurations from each state N_k.
 	# u_kln[k,l,n] is the reduced potential energy beta*U_l(x_kn), where U_l(x) is the potential energy function for state l,
	# beta is the inverse temperature, and and x_kn denotes uncorrelated configuration n from state k.
	# N_k[k] is the number of configurations from state k stored in u_knm
	# Note that this step may take some time, as the relative dimensionless free energies f_k are determined at this point.
	mbar = MBAR(u_kln, N_k)

	# Extract dimensionless free energy differences and their statistical uncertainties.
#	(Deltaf_ij, dDeltaf_ij) = mbar.getFreeEnergyDifferences()
	#(Deltaf_ij, dDeltaf_ij, Theta_ij) = mbar.getFreeEnergyDifferences(uncertainty_method='svd-ew')
	(Deltaf_ij, dDeltaf_ij, Theta_ij) = mbar.getFreeEnergyDifferences(uncertainty_method='approximate')
	#print 'Deltaf_ij', Deltaf_ij
	#print 'dDeltaf_ij', dDeltaf_ij
	beta = 1.0 # keep in units kT
	#print 'Unit-bearing (units kT) free energy difference f_1K = f_K - f_1: %f +- %f' % ( (1./beta) * Deltaf_ij[0,K-1], (1./beta) * dDeltaf_ij[0,K-1])
	self.f_df = np.zeros( (self.nlambda, 2) )  # first column is Deltaf_ij[0,:], second column is dDeltaf_ij[0,:]
	self.f_df[:,0] = Deltaf_ij[0,:]
	self.f_df[:,1] = dDeltaf_ij[0,:]

	# Compute the expectation of some observable A(x) at each state i, and associated uncertainty matrix.
        # Here, A_kn[k,n] = A(x_{kn})
        #(A_k, dA_k) = mbar.computeExpectations(A_kn)
        self.P_dP = np.zeros( (nstates, 2*self.K) )  # left columns are P, right columns are dP
	if debug:
        	print 'state\tP\tdP'
    	for i in range(nstates):
        	A_kn = np.where(states_kn==i,1,0)
        	(p_i, dp_i) = mbar.computeExpectations(A_kn, uncertainty_method='approximate')
        	self.P_dP[i,0:self.K] = p_i
        	self.P_dP[i,self.K:2*self.K] = dp_i
		print i
        	for p in p_i: print p,
        	for dp in dp_i: print dp,
		print 
	pops, dpops = self.P_dP[:,0:self.K], self.P_dP[:,self.K:2*self.K]

	# save results
	self.save_MBAR()
Exemplo n.º 52
0
	  sigma_PF = traj[k]['allowed_sigma_PF'][sigma_PF_index]  #GYH
          u_kln[k,l,n] = sampler[l].neglogP(0, state, sigma_noe, sigma_J, sigma_cs_H, sigma_cs_Ha, sigma_cs_N, sigma_cs_Ca, sigma_PF, gamma_index, beta_c_index, beta_h_index, beta_0_index, xcs_index, xhs_index, bs_index)	#GYH 03/2017
#          u_kln[k,l,n] = sampler[l].neglogP(0, state, sigma_noe, sigma_J, sigma_cs_H, sigma_cs_Ha, sigma_cs_N, sigma_cs_Ca, sigma_PF, gamma_index)        #GYH

      print 'E_%d evaluated in model_%d'%(k,l), u_kln[k,l,n]


# Initialize MBAR with reduced energies u_kln and number of uncorrelated configurations from each state N_k.
# 
# u_kln[k,l,n] is the reduced potential energy beta*U_l(x_kn), where U_l(x) is the potential energy function for state l,
# beta is the inverse temperature, and and x_kn denotes uncorrelated configuration n from state k.
#
# N_k[k] is the number of configurations from state k stored in u_knm
# 
# Note that this step may take some time, as the relative dimensionless free energies f_k are determined at this point.
mbar = MBAR(u_kln, N_k)

# Extract dimensionless free energy differences and their statistical uncertainties.
(Deltaf_ij, dDeltaf_ij) = mbar.getFreeEnergyDifferences()
print 'Deltaf_ij', Deltaf_ij
print 'dDeltaf_ij', dDeltaf_ij
beta = 1.0 # keep in units kT
print 'Unit-bearing (units kT) free energy difference f_1K = f_K - f_1: %f +- %f' % ( (1./beta) * Deltaf_ij[0,K-1], (1./beta) * dDeltaf_ij[0,K-1])
f_df = np.zeros( (nlambda, 2) )  # first column is Deltaf_ij[0,:], second column is dDeltaf_ij[0,:]
f_df[:,0] = Deltaf_ij[0,:]
f_df[:,1] = dDeltaf_ij[0,:]
print 'Writing %s...'%args.bayesfactorfile
savetxt(args.bayesfactorfile, f_df)
print '...Done.'

Exemplo n.º 53
0
def estimate_free_energies(ncfile, ndiscard=0, nuse=None, g=None):
    """
    Estimate free energies of all alchemical states.

    Parameters
    ----------
    ncfile : NetCDF
       Input YANK netcdf file
    ndiscard : int, optional, default=0
       Number of iterations to discard to equilibration
    nuse : int, optional, default=None
       Maximum number of iterations to use (after discarding)
    g : int, optional, default=None
       Statistical inefficiency to use if desired; if None, will be computed.

    TODO
    ----
    * Automatically determine 'ndiscard'.

    """

    # Get current dimensions.
    niterations = ncfile.variables['energies'].shape[0]
    nstates = ncfile.variables['energies'].shape[1]
    natoms = ncfile.variables['energies'].shape[2]

    # Extract energies.
    logger.info("Reading energies...")
    energies = ncfile.variables['energies']
    u_kln_replica = np.zeros([nstates, nstates, niterations], np.float64)
    for n in range(niterations):
        u_kln_replica[:,:,n] = energies[n,:,:]
    logger.info("Done.")

    # Deconvolute replicas
    logger.info("Deconvoluting replicas...")
    u_kln = np.zeros([nstates, nstates, niterations], np.float64)
    for iteration in range(niterations):
        state_indices = ncfile.variables['states'][iteration,:]
        u_kln[state_indices,:,iteration] = energies[iteration,:,:]
    logger.info("Done.")

    # Compute total negative log probability over all iterations.
    u_n = np.zeros([niterations], np.float64)
    for iteration in range(niterations):
        u_n[iteration] = np.sum(np.diagonal(u_kln[:,:,iteration]))
    #logger.info(u_n

    # DEBUG
    outfile = open('u_n.out', 'w')
    for iteration in range(niterations):
        outfile.write("%8d %24.3f\n" % (iteration, u_n[iteration]))
    outfile.close()

    # Discard initial data to equilibration.
    u_kln_replica = u_kln_replica[:,:,ndiscard:]
    u_kln = u_kln[:,:,ndiscard:]
    u_n = u_n[ndiscard:]

    # Truncate to number of specified conforamtions to use
    if (nuse):
        u_kln_replica = u_kln_replica[:,:,0:nuse]
        u_kln = u_kln[:,:,0:nuse]
        u_n = u_n[0:nuse]

    # Subsample data to obtain uncorrelated samples
    N_k = np.zeros(nstates, np.int32)
    indices = timeseries.subsampleCorrelatedData(u_n, g=g) # indices of uncorrelated samples
    #print u_n # DEBUG
    #indices = range(0,u_n.size) # DEBUG - assume samples are uncorrelated
    N = len(indices) # number of uncorrelated samples
    N_k[:] = N
    u_kln[:,:,0:N] = u_kln[:,:,indices]
    logger.info("number of uncorrelated samples:")
    logger.info(N_k)
    logger.info("")

    #===================================================================================================
    # Estimate free energy difference with MBAR.
    #===================================================================================================

    # Initialize MBAR (computing free energy estimates, which may take a while)
    logger.info("Computing free energy differences...")
    mbar = MBAR(u_kln, N_k)

    # Get matrix of dimensionless free energy differences and uncertainty estimate.
    logger.info("Computing covariance matrix...")

    try:
        # pymbar 2
        (Deltaf_ij, dDeltaf_ij) = mbar.getFreeEnergyDifferences()
    except ValueError:
        # pymbar 3
        (Deltaf_ij, dDeltaf_ij, theta_ij) = mbar.getFreeEnergyDifferences()

#    # Matrix of free energy differences
    logger.info("Deltaf_ij:")
    for i in range(nstates):
        str_row = ""
        for j in range(nstates):
            str_row += "%8.3f" % Deltaf_ij[i, j]
        logger.info(str_row)

#    print Deltaf_ij
#    # Matrix of uncertainties in free energy difference (expectations standard deviations of the estimator about the true free energy)
    logger.info("dDeltaf_ij:")
    for i in range(nstates):
        str_row = ""
        for j in range(nstates):
            str_row += "%8.3f" % dDeltaf_ij[i, j]
        logger.info(str_row)

    # Return free energy differences and an estimate of the covariance.
    return (Deltaf_ij, dDeltaf_ij)
Exemplo n.º 54
0
def write_pdb_resampled(ncfile, atoms, output_pdb_filename, reference_state=0, ndiscard=0, nsamples=1000):
    """
    Resample configurations with probability in specified state, concatenating into PDB file.

    ARGUMENTS
       ncfile (NetCDF) - input YANK netcdf file
       atoms (list) - atom records from reference PDB file
       output_pdb_filename (string) - PDB file of resampled configurations to write

    OPTIONAL ARGUMENTS
       reference_state (int) - state to reweight to
       ndiscard (int) - number of iterations to discard to equilibration
       nsamples (int) - number of sampls to generate

    """

    import numpy

    # Get current dimensions.
    niterations = ncfile.variables['energies'].shape[0]
    nstates = ncfile.variables['energies'].shape[1]
    natoms = ncfile.variables['energies'].shape[2]

    # Extract energies.
    print "Reading energies..."
    energies = ncfile.variables['energies']
    u_kln_replica = zeros([nstates, nstates, niterations], float64)
    for n in range(niterations):
        u_kln_replica[:,:,n] = energies[n,:,:]
    print "Done."

    # Deconvolute replicas to collect by thermodynamic state.
    print "Deconvoluting replicas..."
    u_kln = numpy.zeros([nstates, nstates, niterations], float64)
    for iteration in range(niterations):
        state_indices = ncfile.variables['states'][iteration,:]
        u_kln[state_indices,:,iteration] = energies[iteration,:,:]
    print "Done."

    # Discard initial data to equilibration.
    u_kln = u_kln[:,:,ndiscard:]
    [K,L,N] = u_kln.shape
    N_k = N * numpy.ones([K], numpy.int32)

    # Compute snapshot energies.
    print "Computing snapshot energies..."
    u_kn = numpy.zeros([K,N], numpy.float32)
    # Get temperature.
    temperature = ncfile.groups['thermodynamic_states'].variables['temperatures'][reference_state] * units.kelvin
    kB = units.BOLTZMANN_CONSTANT_kB * units.AVOGADRO_CONSTANT_NA # Boltzmann constant
    kT = kB * temperature # thermal energy
    # Deserialize system.
    system = openmm.XmlSerializer.deserialize(str(ncfile.groups['thermodynamic_states'].variables['systems'][reference_state]))
    # Create Context.
    integrator = openmm.VerletIntegrator(1.0 * units.femtoseconds)
    context = openmm.Context(system, integrator)
    # Turn off restraints.
    context.setParameter('restraint_lambda', 0.0)
    for n in range(N):
        iteration = ndiscard + n
        for replica_index in range(K):        
            # Recompute energies.
            state_index = ncfile.variables['states'][iteration,replica_index]
            positions = ncfile.variables['positions'][iteration,replica_index]
            context.setPositions(positions)
            openmm_state = context.getState(getEnergy=True)
            u_kn[state_index,n] = openmm_state.getPotentialEnergy() / kT

    #===================================================================================================
    # Initialize MBAR.
    #===================================================================================================   
   
    # Initialize MBAR (computing free energy estimates, which may take a while)
    print "Initializing MBAR (warning: using all correlated data)..."
    mbar = MBAR(u_kln, N_k, verbose=False) 

    # Get snapshot weights.
    #u_kn = numpy.squeeze(u_kln[:,state,:])
    log_w_kn = mbar._computeUnnormalizedLogWeights(u_kn)
    f = _logsum(log_w_kn[mbar.indices])
    w_kn = numpy.exp(log_w_kn - f)
    p_kn = w_kn / w_kn[mbar.indices].sum()

    # Form linear list of potential snapshots to choose.
    [K, N] = p_kn.shape
    snapshots = list()
    probabilities = list()
    for replica in range(K):
        for sample in range(N):
            state = ncfile.variables['states'][ndiscard+sample, replica]
            snapshots.append( (replica, ndiscard+sample) )
            probabilities.append( p_kn[state,sample] )
    probabilities = numpy.array(probabilities)

    # Draw samples.
    state_hist = numpy.zeros([K], numpy.int32)
    import numpy.random
    sample_indices = numpy.random.choice(range(len(snapshots)), size=[nsamples], p=probabilities)
    title = 'generated by resampling'
    outfile = open(output_pdb_filename, 'w')
    for (sample_number, sample_index) in enumerate(sample_indices):
        [replica, iteration] = snapshots[sample_index]      
        state = ncfile.variables['states'][iteration, replica]
        state_hist[state] += 1
        print "sample %8d : replica %3d iteration %6d state %3d" % (sample_number, replica, iteration, state)
        outfile.write('MODEL     %4d\n' % (sample_number+1))
        write_pdb(atoms, outfile, iteration, replica, title, ncfile)
        outfile.write('ENDMDL\n')                        
    outfile.close()

    print "Counts from each state:"
    print "%5s %6s" % ('state', 'counts')
    for k in range(K):
        print "%5d %6d" % (k, state_hist[k])
    print ""

    return
Exemplo n.º 55
0
def execute(nstates, q_samp_space, epsi_samp_space, sig_samp_space, useO=False, sliceset=None):
    #Initilize limts
    sig3_samp_space = sig_samp_space**3
    #These are the limits used to compute the constant matricies
    #They should match with LJ 0 and 5, ALWAYS
    q_min = -2.0
    q_max = +2.0
    epsi_min = epsi_samp_space[0]
    epsi_max = epsi_samp_space[5]
    sig_min = sig_samp_space[0]
    sig_max = sig_samp_space[5]
    lamto_epsi = lambda lam: (epsi_max - epsi_min)*lam + epsi_min
    lamto_sig3 = lambda lam: (sig_max**3 - sig_min**3)*lam + sig
    lamto_sig = lambda lam: lamto_sig3(lam)**(1.0/3)
    if spacing is logspace:
        StartSpace = -5
        EndSpace   = 0
        spacename='log'
        PlotStart = 10**StartSpace
        PlotEnd   = 10**EndSpace
    elif spacing is linspace:
        sigStartSpace = sig_min
        sigEndSpace   = sig_max
        epsiStartSpace = epsi_min
        qStartSpace = q_min
        qEndSpace = q_max
        if alle:
            epsiEndSpace   = 3.6 #!!! Manual set
        else:
            epsiEndSpace   = epsi_max
        spacename='linear'
        sigPlotStart = sigStartSpace**sig_factor
        sigPlotEnd   = sigEndSpace**sig_factor
        epsiPlotStart = epsiStartSpace
        epsiPlotEnd   = epsiEndSpace
        qPlotStart = qStartSpace
        qPlotEnd = qEndSpace



    #generate sample length
    g_en_start = 19 #Row where data starts in g_energy output
    g_en_energy = 1 #Column where the energy is located
    niterations_max = 30001
    #Min and max sigmas:
    fC12 = lambda epsi,sig: 4*epsi*sig**12
    fC6 = lambda epsi,sig: 4*epsi*sig**6
    fsig = lambda C12, C6: (C12/C6)**(1.0/6)
    fepsi = lambda C12, C6: C6**2/(4*C12)
    C12_delta = fC12(epsi_max, sig_max) - fC12(epsi_min, sig_min)
    C6_delta = fC6(epsi_max, sig_max) - fC6(epsi_min, sig_min)
    C12_delta_sqrt = fC12(epsi_max, sig_max)**.5 - fC12(epsi_min, sig_min)**.5
    C6_delta_sqrt = fC6(epsi_max, sig_max)**.5 - fC6(epsi_min, sig_min)**.5
    #Set up lambda calculation equations
    flamC6 = lambda epsi, sig: (fC6(epsi, sig) - fC6(epsi_min, sig_min))/C6_delta
    flamC12 = lambda epsi, sig: (fC12(epsi, sig) - fC12(epsi_min, sig_min))/C12_delta
    flamC6sqrt = lambda epsi, sig: (fC6(epsi, sig)**.5 - fC6(epsi_min, sig_min)**.5)/C6_delta_sqrt
    flamC12sqrt = lambda epsi, sig: (fC12(epsi, sig)**.5 - fC12(epsi_min, sig_min)**.5)/C12_delta_sqrt
    flamC1 = lambda q: q
    lamC12 = flamC12sqrt(epsi_samp_space, sig_samp_space)
    lamC6 = flamC6sqrt(epsi_samp_space, sig_samp_space)
    lamC1 = flamC1(q_samp_space)
    #Try to load u_kln
    lam_range = linspace(0,1,nstates)
    subsampled = numpy.zeros([nstates],dtype=numpy.bool)
    if load_ukln and os.path.isfile('esq_ukln_consts_n%i.npz'%nstates):
        energies = consts(nstates, file='esq_ukln_consts_n%i.npz'%nstates)
    else:
        #Initial u_kln
        energies = consts(nstates)
        g_t = numpy.zeros([nstates])
        #Read in the data
        for k in xrange(nstates):
            print "Importing LJ = %02i" % k
            energy_dic = {'full':{}, 'rep':{}}
            #Try to load the subsampled filenames
            try:
                energy_dic['null'] = open('lj%s/prod/subenergy%s_null.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the null energies (unaffected) of the K states
                for l in xrange(nstates):
                    energy_dic['full']['%s'%l] = open('lj%s/prod/subenergy%s_%s.xvg' %(k,k,l),'r').readlines()[g_en_start:] #Read in the full energies for each state at KxL
                    if l == 5 or l == 0:
                        energy_dic['rep']['%s'%l] = open('lj%s/prod/subenergy%s_%s_rep.xvg' %(k,k,l),'r').readlines()[g_en_start:] #Read in the repulsive energies at 0, nstates-1, and K
                energy_dic['q']  =  open('lj%s/prod/subenergy%s_q.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the charge potential energy
                energy_dic['q2']  =  open('lj%s/prod/subenergy%s_q2.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the charge potential energy
                iter = len(energy_dic['null'])
                subsampled[k] = True
                # Set the object to iterate over, since we want every frame of the subsampled proces, we just use every frame
                frames = xrange(iter)
            except: #Load the normal way
                energy_dic['null'] = open('lj%s/prod/energy%s_null.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the null energies (unaffected) of the K states
                for l in xrange(nstates):
                    energy_dic['full']['%s'%l] = open('lj%s/prod/energy%s_%s.xvg' %(k,k,l),'r').readlines()[g_en_start:] #Read in the full energies for each state at KxL
                    if l == 5 or l == 0:
                        energy_dic['rep']['%s'%l] = open('lj%s/prod/energy%s_%s_rep.xvg' %(k,k,l),'r').readlines()[g_en_start:] #Read in the repulsive energies at 0, nstates-1, and K
                energy_dic['q']  =  open('lj%s/prod/energy%s_q.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the charge potential energy
                energy_dic['q2']  =  open('lj%s/prod/energy%s_q2.xvg' %(k,k),'r').readlines()[g_en_start:] #Read in the charge potential energy
                iter = niterations_max
                #Subsample
                tempenergy = numpy.zeros(iter)
                for frame in xrange(iter):
                    tempenergy[frame] = float(energy_dic['full']['%s'%k][frame].split()[g_en_energy])
                frames, temp_series, g_t[k] = subsample_series(tempenergy, return_g_t=True)
                print "State %i has g_t of %i" % (k, g_t[k])
                iter = len(frames)
            #Update iterations if need be
            energies.updateiter(iter)
            #Fill in matricies
            n = 0
            for frame in frames:
                #Unaffected state
                energies.const_Un_matrix[k,n] = float(energy_dic['null'][frame].split()[g_en_energy])
                #Charge only state
                VI = float(energy_dic['q'][frame].split()[g_en_energy]) - energies.const_Un_matrix[k,n]
                VII = float(energy_dic['q2'][frame].split()[g_en_energy]) - energies.const_Un_matrix[k,n]
                q1 = 1
                q2 = 0.5
                QB = (q1**2*VII - q2**2*VI)/(q1**2*q2 - q2**2*q1)
                QA = (VI - q1*QB)/q1**2
                energies.const_q_matrix[k,n] = QB
                energies.const_q2_matrix[k,n] = QA
                #const_q_matrix[k,n] = float(energy_dic['q'][n].split()[g_en_energy]) - const_Un_matrix[k,n]
                #Isolate the data
                for l in xrange(nstates):
                    energies.u_kln[k,l,n] = float(energy_dic['full']['%s'%l][frame].split()[g_en_energy]) #extract the kln energy, get the line, split the line, get the energy, convert to float, store
                #Repulsive terms: 
                #R0 = U_rep[k,k,n] + dhdl[k,0,n] - Un[k,n]
                energies.const_R0_matrix[k,n] = float(energy_dic['rep']['%s'%(0)][frame].split()[g_en_energy]) - energies.const_Un_matrix[k,n]
                #R1 = U_rep[k,k,n] + dhdl[k,-1,n] - Un[k,n]
                energies.const_R1_matrix[k,n] = float(energy_dic['rep']['%s'%(5)][frame].split()[g_en_energy]) - energies.const_Un_matrix[k,n]
                energies.const_R_matrix[k,n] = energies.const_R1_matrix[k,n] - energies.const_R0_matrix[k,n]
                #Finish the total unaffected term
                #Total unaffected = const_Un + U0 = const_Un + (U_full[k,0,n] - const_Un) = U_full[k,0,n]
                energies.const_unaffected_matrix[k,n] = energies.u_kln[k,0,n]
                #Fill in the q matrix
                
                #Attractive term
                #u_A = U_full[k,n] - constR[k,n] - const_unaffected[k,n]
                energies.const_A0_matrix[k,n] = energies.u_kln[k,0,n] - energies.const_R0_matrix[k,n] - energies.const_Un_matrix[k,n]
                energies.const_A1_matrix[k,n] = energies.u_kln[k,5,n] - energies.const_R1_matrix[k,n] - energies.const_Un_matrix[k,n]
                energies.const_A_matrix[k,n] = energies.const_A1_matrix[k,n] - energies.const_A0_matrix[k,n]
                n += 1
        energies.determine_all_N_k()
        #write_g_t(g_t)
        constname = 'esq_ukln_consts_n%i.npz'%nstates
        if load_ukln and not os.path.isfile(constname):
            energies.save_consts(constname)
    #Sanity check
    sanity_kln = numpy.zeros(energies.u_kln.shape)
    #Round q to the the GROMACS precision, otherwise there is drift in q which can cause false positives
    lamC1r = numpy.around(lamC1, decimals=4)
    for l in xrange(nstates):
        #sanity_kln[:,l,:] = lamC12[l]*energies.const_R_matrix + lamC6[l]*energies.const_A_matrix + lamC1[l]*energies.const_q_matrix + lamC1[l]**2*energies.const_q2_matrix + energies.const_unaffected_matrix
        sanity_kln[:,l,:] = lamC12[l]*energies.const_R_matrix + lamC6[l]*energies.const_A_matrix + lamC1r[l]*energies.const_q_matrix + lamC1r[l]**2*energies.const_q2_matrix + energies.const_unaffected_matrix
    del_kln = numpy.abs(energies.u_kln - sanity_kln)
    del_tol = 1 #in kJ per mol
    print "Max Delta: %f" % numpy.nanmax(del_kln)
    if numpy.nanmax(del_kln) > 1: #Check for numeric error
        #Double check to see if the weight is non-zero.
        #Most common occurance is when small particle is tested in large particle properties
        #Results in energies > 60,000 kj/mol, which carry 0 weight to machine precision
        nonzero_weights = numpy.count_nonzero(numpy.exp(-energies.u_kln[numpy.where(del_kln > .2)] * kjpermolTokT))
        if nonzero_weights != 0:
            print "and there are %d nonzero weights! Stopping execution" % nonzero_weights
            pdb.set_trace()
        else:
            print "but these carry no weight and so numeric error does not change the answer"

    ##################################################
    ############### END DATA INPUT ###################
    ##################################################
    #Convert to dimless
    energies.dimless()
    #Set up regular grid
    sig_range = (spacing(sigStartSpace**3,sigEndSpace**3,Nparm))**(1.0/3)
    epsi_range = spacing(epsiStartSpace,epsiEndSpace,Nparm)
    q_range = spacing(qStartSpace,qEndSpace,Nparm)
    epsi_plot_range = spacing(epsiStartSpace,epsi_max,Nparm)
    #Load subsequent f_ki
    f_ki_loaded = False
    state_counter = nstates
    while not f_ki_loaded and state_counter != 0:
        #Load the largest f_ki you can
        try:
            f_ki_load = numpy.load('esq_f_k_{myint:{width}}.npy'.format(myint=state_counter, width=len(str(state_counter))))
            f_ki_loaded = True
            f_ki_n = state_counter
        except:
            pass
        state_counter -= 1
    try:
        if nstates >= f_ki_n:
            draw_ki = f_ki_n
        else:
            draw_ki = nstates
        #Copy the loaded data
        f_ki = numpy.zeros(nstates)
        f_ki[:draw_ki] = f_ki_load[:draw_ki]
        mbar = MBAR(energies.u_kln, energies.N_k, verbose = True, initial_f_k=f_ki, subsampling_protocol=[{'method':'L-BFGS-B','options':{'disp':True}}], subsampling=1)
    except:
        mbar = MBAR(energies.u_kln, energies.N_k, verbose = True, subsampling_protocol=[{'method':'L-BFGS-B','options':{'disp':True}}], subsampling=1)
    if not f_ki_loaded or f_ki_n != nstates:
        try:
            numpy.save_compressed('esq_f_k_{myint:{width}}.npy'.format(myint=nstates, width=len(str(nstates))), mbar.f_k)
        except:
            numpy.save('esq_f_k_{myint:{width}}.npy'.format(myint=nstates, width=len(str(nstates))), mbar.f_k)

    ######## Begin Computing RDF's #########

    basebins = 800
    plotx = linspace(genrdf.distmin, genrdf.distmax, basebins)/10.0 #put in nm
    dr = plotx[1] - plotx[0]
    #Generate blank
    rdfs = numpy.zeros([basebins, nstates, energies.itermax], dtype=numpy.float64)
    if useO:
        pathstr = 'lj%s/prod/rdfOhist%sb%i.npz'
    else:
        pathstr = 'lj%s/prod/rdfhist%s.npz'
    for k in xrange(nstates):
        try: #Try to load in
            if useO:
                rdfk = numpy.load(pathstr%(k,k,basebins))['rdf']
            else:
                rdfk = numpy.load(pathstr%(k,k))['rdf']
        except:
            raise
        nkbin, nkiter = rdfk.shape
        rdfs[:,k,:nkiter] = rdfk
  
    #Do halfs
    if sliceset is 1:
        darange = xrange(0,25)
        nrange = 25
    elif sliceset is 2:
        darange = xrange(25,Nparm)
        nrange = 25
    #Do fifths
    elif sliceset is 3:
        darange = xrange(0,10)
        nrange = 10
    elif sliceset is 4:
        darange = xrange(10,20)
        nrange = 10
    elif sliceset is 5:
        darange = xrange(20,30)
        nrange = 10
    elif sliceset is 6:
        darange = xrange(30,40)
        nrange = 10
    elif sliceset is 7:
        darange = xrange(40,Nparm)
        nrange = Nparm-40
    #Do Everything
    else:
        darange = xrange(Nparm)
        nrange = Nparm
    #Generate the rmins for each lj combo
    #                    epsi   sig
    rmins = numpy.zeros([Nparm, Nparm])
    q = 0
    run_start_time = time.time()
    number_of_iterations = Nparm*nrange
    iteration = 0
    gr = (numpy.sqrt(5)-1)/2.0
    #Set up units for closest point
    Uplotx = units.Quantity(plotx, units.nanometer)
    zeroR = numpy.zeros(plotx.shape)
    OWsig = 3.15061 * units.angstrom
    OWepsi = 0.6364 * units.kilojoules_per_mole
    for iepsi in darange:
        epsi = epsi_range[iepsi]
        for isig in xrange(Nparm):
            if not os.path.isfile('esq_%s/RDFns%iE%iS%i.npz' %(spacename, nstates, iepsi, isig)):
                initial_time = time.time()
                iteration += 1
                print "Working on e %i and s %i" % (iepsi, isig)
                sig = sig_range[isig]
                u_kn_P = flamC12sqrt(epsi,sig)*energies.const_R_matrix + flamC6sqrt(epsi,sig)*energies.const_A_matrix + flamC1(q)*energies.const_q_matrix + flamC1(q)**2*energies.const_q2_matrix + energies.const_unaffected_matrix
                #Estimate zero-th order RDF
                guessepsi = geo(epsi*units.kilojoules_per_mole,OWepsi)
                guesssig = geo(sig*units.nanometer, OWsig)
                rdfguess = exp0(Uplotx, guessepsi, guesssig)
                depart0 = plotx[numpy.isclose(rdfguess,zeroR)].max()
                #Find nearest value in array
                #rcurrent = numpy.argmin(numpy.abs(sig*0.75-plotx))
                rcurrent = numpy.argmin(numpy.abs(depart0-plotx))
                foundmin = False
                #Estimate current min
                Ecurrent = mbar.computePerturbedExpectation(u_kn_P, rdfs[rcurrent,:,:], compute_uncertainty=False)
                if numpy.isclose(Ecurrent, 0):
                    #Case where sigma already is g=0
                    while foundmin is False:
                        rnew = rcurrent + 1
                        Enew = mbar.computePerturbedExpectation(u_kn_P, rdfs[rnew,:,:], compute_uncertainty=False)
                        if numpy.isclose(Enew, 0):
                            #Have not found where g(r)=0 and g(r+dr)>0
                            rcurrent = rnew
                        else:
                            foundmin = True
                else:
                    #Case where sigma is not g=0
                    while foundmin is False:
                        rnew = rcurrent - 1
                        Enew = mbar.computePerturbedExpectation(u_kn_P, rdfs[rnew,:,:], compute_uncertainty=False)
                        #Reversed logic of previous since we are searching backwards
                        if not numpy.isclose(Enew, 0):
                            #Have not found where g(r)=0 and g(r+dr)>0
                            rcurrent = rnew
                        else:
                            foundmin = True
                #rmins[iepsi,isig] = rcurrent
                laptime = time.clock()
                # Show timing statistics. copied from Repex.py, copywrite John Chodera
                final_time = time.time()
                elapsed_time = final_time - initial_time
                estimated_time_remaining = (final_time - run_start_time) / (iteration) * (number_of_iterations - iteration)
                estimated_total_time = (final_time - run_start_time) / (iteration) * (number_of_iterations)
                estimated_finish_time = final_time + estimated_time_remaining
                print "Iteration took %.3f s." % elapsed_time
                print "Estimated completion in %s, at %s (consuming total wall clock time %s)." % (str(datetime.timedelta(seconds=estimated_time_remaining)), time.ctime(estimated_finish_time), str(datetime.timedelta(seconds=estimated_total_time)))
                savez('esq_%s/RDFns%iE%iS%i.npz' %(spacename, nstates, iepsi, isig), rmins=numpy.array([plotx[rnew]]))
            else:
                rmins[iepsi,isig] = numpy.load('esq_%s/RDFns%iE%iS%i.npz' %(spacename, nstates, iepsi, isig))['rmins']
    savez('LJEffHS.npz', rmins=rmins)
Exemplo n.º 56
0
def compute_hydration_energy(entry, parameters, platform_name="CPU"):
    """
    Compute hydration energy of a single molecule given a GBSA parameter set.

    ARGUMENTS

    molecule (OEMol) - molecule with GBSA atom types
    parameters (dict) - parameters for GBSA atom types

    RETURNS

    energy (float) - hydration energy in kcal/mol

    """


    platform = openmm.Platform.getPlatformByName('CPU')

    from pymbar import MBAR

    timestep = 2 * units.femtoseconds

    molecule = entry['molecule']
    iupac_name = entry['iupac']
    cid = molecule.GetData('cid')

    # Retrieve OpenMM System.
    vacuum_system = entry['system']
    solvent_system = copy.deepcopy(entry['solvated_system'])

    # Get nonbonded force.
    forces = { solvent_system.getForce(index).__class__.__name__ : solvent_system.getForce(index) for index in range(solvent_system.getNumForces()) }
    nonbonded_force = forces['NonbondedForce']
    gbsa_force = forces['CustomGBForce']

    # Build indexable list of atoms.
    atoms = [atom for atom in molecule.GetAtoms()]
    natoms = len(atoms)


    # Create context for solvent system.
    timestep = 2.0 * units.femtosecond
    solvent_integrator = openmm.VerletIntegrator(timestep)


    # Create context for vacuum system.
    vacuum_integrator = openmm.VerletIntegrator(timestep)

    # Assign GBSA parameters.
    for (atom_index, atom) in enumerate(atoms):
        [charge, sigma, epsilon] = nonbonded_force.getParticleParameters(atom_index)
        atomtype = atom.GetStringData("gbsa_type") # GBSA atomtype
        radius = parameters['%s_%s' % (atomtype, 'radius')] * units.angstroms
        scalingFactor = parameters['%s_%s' % (atomtype, 'scalingFactor')]
        gbsa_force.setParticleParameters(atom_index, [charge, radius, scalingFactor])

    solvent_context = openmm.Context(solvent_system, solvent_integrator,platform)
    vacuum_context = openmm.Context(vacuum_system, vacuum_integrator, platform)

    # Compute energy differences.
    temperature = entry['temperature']
    kT = kB * temperature
    beta = 1.0 / kT

    initial_time = time.time()
    x_n = entry['x_n']
    u_n = entry['u_n']
    nsamples = len(u_n)
    nstates = 3 # number of thermodynamic states
    u_kln = np.zeros([3,3,nsamples], np.float64)
    for sample in range(nsamples):
        positions = units.Quantity(x_n[sample,:,:], units.nanometers)

        u_kln[0,0,sample] = u_n[sample]

        vacuum_context.setPositions(positions)
        vacuum_state = vacuum_context.getState(getEnergy=True)
        u_kln[0,1,sample] = beta * vacuum_state.getPotentialEnergy()

        solvent_context.setPositions(positions)
        solvent_state = solvent_context.getState(getEnergy=True)
        u_kln[0,2,sample] = beta * solvent_state.getPotentialEnergy()

    N_k = np.zeros([nstates], np.int32)
    N_k[0] = nsamples


    mbar = MBAR(u_kln, N_k)
    try:
        df_ij, ddf_ij, _ = mbar.getFreeEnergyDifferences()
    except linalg.LinAlgError:
        return np.inf

    DeltaG_in_kT = df_ij[1,2]
    dDeltaG_in_kT = ddf_ij[1,2]

    final_time = time.time()
    elapsed_time = final_time - initial_time
    #print "%48s | %48s | reweighting took %.3f s" % (cid, iupac_name, elapsed_time)

    # Clean up.
    del solvent_context, solvent_integrator
    del vacuum_context, vacuum_integrator

    energy = kT * DeltaG_in_kT

    #print "%48s | %48s | DeltaG = %.3f +- %.3f kT " % (cid, iupac_name, energy, dDeltaG_in_kT)
    print(DeltaG_in_kT)
    print(type(DeltaG_in_kT))

    return DeltaG_in_kT
# get the unreduced energies
U_kln = u_kln/beta

#=============================================================================================
# Estimate free energies and expectations.
#=============================================================================================

print "======================================"
print "      Initializing MBAR               "
print "======================================"

# Estimate free energies from simulation using MBAR.
print "Estimating relative free energies from simulation (this may take a while)..."

# Initialize the MBAR class, determining the free energies.
mbar = MBAR(u_kln, N_k, method = 'adaptive',relative_tolerance=1.0e-10,verbose=True)
# Get matrix of dimensionless free energy differences and uncertainty estimate.

print "============================================="
print "      Testing getFreeEnergyDifferences       "
print "============================================="

(Delta_f_ij_estimated, dDelta_f_ij_estimated) = mbar.getFreeEnergyDifferences()

# Compute error from analytical free energy differences.
Delta_f_ij_error = Delta_f_ij_estimated - Delta_f_ij_analytical

print "Error in free energies is:"
print Delta_f_ij_error

print "Standard deviations away is:"
  #=============================================================================================
  # Generate independent data samples from K one-dimensional harmonic oscillators centered at q = 0.
  #=============================================================================================
  
  randomsample = testsystems.harmonic_oscillators.HarmonicOscillatorsTestCase(O_k=O_k, K_k=K_k, beta=beta)
  [x_kn,u_kln,N_k] = randomsample.sample(N_k,mode='u_kln')

  # get the unreduced energies
  U_kln = u_kln/beta

  #=============================================================================================
  # Estimate free energies and expectations.
  #=============================================================================================

  # Initialize the MBAR class, determining the free energies.
  mbar = MBAR(u_kln, N_k, method = 'adaptive',relative_tolerance=1.0e-10,verbose=False) # use fast Newton-Raphson solver
  (Deltaf_ij_estimated, dDeltaf_ij_estimated) = mbar.getFreeEnergyDifferences()
  
  # Compute error from analytical free energy differences.
  Deltaf_ij_error = Deltaf_ij_estimated - Deltaf_ij_analytical

  # Estimate the expectation of the mean-squared displacement at each condition.
  if observe == 'RMS displacement':
    A_kn = numpy.zeros([K,K,N_max], dtype = numpy.float64);
    for k in range(0,K):
      for l in range(0,K):
        A_kn[k,l,0:N_k[k]] = (x_kn[k,0:N_k[k]] - O_k[l])**2 # observable is the squared displacement

  # observable is the potential energy, a 3D array since the potential energy is a function of 
  # thermodynamic state
  elif observe == 'potential energy':
            """ Reminder: ['step', 'E', 'accept', 'state', 'sigma_noe', 'sigma_J', 'gamma']"""
            sigma_noe = traj[k]['allowed_sigma_noe'][sigma_noe_index]
            sigma_J = traj[k]['allowed_sigma_J'][sigma_J_index]
            u_kln[k,l,i] = samplers[l].neglogP(state, sigma_noe, sigma_J, gamma_index)
 
print u_kln

# Initialize MBAR with reduced energies u_kln and number of uncorrelated configurations from each state N_k.
# 
# u_kln[k,l,n] is the reduced potential energy beta*U_l(x_kn), where U_l(x) is the potential energy function for state l,
# beta is the inverse temperature, and and x_kn denotes uncorrelated configuration n from state k.
#
# N_k[k] is the number of configurations from state k stored in u_knm
# 
# Note that this step may take some time, as the relative dimensionless free energies f_k are determined at this point.
mbar = MBAR(u_kln, N_k, verbose=True)
# OPTIONS
# maximum_iterations=10000, relative_tolerance=1e-07, verbose=False,
# initial_f_k=None, method='adaptive', use_optimized=None, newton_first_gamma=0.1, newton_self_consistent=2, maxrange=100000.0, initialize='zeros'

# Extract dimensionless free energy differences and their statistical uncertainties.
(Deltaf_ij, dDeltaf_ij) = mbar.getFreeEnergyDifferences()
print 'Deltaf_ij', Deltaf_ij
print 'dDeltaf_ij', dDeltaf_ij
K = 2
beta = 1.0 # keep in units kT
print 'Unit-bearing (units kT) free energy difference between states 1 and K: %f +- %f' % ( (1./beta) * Deltaf_ij[0,K-1], (1./beta) * dDeltaf_ij[0,K-1])

# Compute the expectation of some observable A(x) at each state i, and associated uncertainty matrix.
# Here, A_kn[k,n] = A(x_{kn})
#(A_k, dA_k) = mbar.computeExpectations(A_kn)