Exemplo n.º 1
0
def test_scale_cost_to_minibatch_works(aux_total_size):
    mu0 = 1.5
    sigma = 1.0
    y_obs = np.array([1.6, 1.4])
    beta = len(y_obs) / float(aux_total_size)

    # TODO: aesara_config
    # with pm.Model(aesara_config=dict(floatX='float64')):
    # did not not work as expected
    # there were some numeric problems, so float64 is forced
    with aesara.config.change_flags(floatX="float64", warn_float64="ignore"):

        assert aesara.config.floatX == "float64"
        assert aesara.config.warn_float64 == "ignore"

        post_mu = np.array([1.88], dtype=aesara.config.floatX)
        post_sigma = np.array([1], dtype=aesara.config.floatX)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y", mu=mu, sigma=1, observed=y_obs, total_size=aux_total_size)
            # Create variational gradient tensor
            mean_field_1 = MeanField()
            assert mean_field_1.scale_cost_to_minibatch
            mean_field_1.shared_params["mu"].set_value(post_mu)
            mean_field_1.shared_params["rho"].set_value(np.log(np.exp(post_sigma) - 1))

            with aesara.config.change_flags(compute_test_value="off"):
                elbo_via_total_size_scaled = -pm.operators.KL(mean_field_1)()(10000)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y", mu=mu, sigma=1, observed=y_obs, total_size=aux_total_size)
            # Create variational gradient tensor
            mean_field_2 = MeanField()
            assert mean_field_1.scale_cost_to_minibatch
            mean_field_2.scale_cost_to_minibatch = False
            assert not mean_field_2.scale_cost_to_minibatch
            mean_field_2.shared_params["mu"].set_value(post_mu)
            mean_field_2.shared_params["rho"].set_value(np.log(np.exp(post_sigma) - 1))

        with aesara.config.change_flags(compute_test_value="off"):
            elbo_via_total_size_unscaled = -pm.operators.KL(mean_field_2)()(10000)

        np.testing.assert_allclose(
            elbo_via_total_size_unscaled.eval(),
            elbo_via_total_size_scaled.eval() * pm.floatX(1 / beta),
            rtol=0.02,
            atol=1e-1,
        )
Exemplo n.º 2
0
def test_elbo():
    mu0 = 1.5
    sigma = 1.0
    y_obs = np.array([1.6, 1.4])

    post_mu = np.array([1.88], dtype=aesara.config.floatX)
    post_sigma = np.array([1], dtype=aesara.config.floatX)
    # Create a model for test
    with pm.Model() as model:
        mu = pm.Normal("mu", mu=mu0, sigma=sigma)
        pm.Normal("y", mu=mu, sigma=1, observed=y_obs)

    # Create variational gradient tensor
    mean_field = MeanField(model=model)
    with aesara.config.change_flags(compute_test_value="off"):
        elbo = -pm.operators.KL(mean_field)()(10000)

    mean_field.shared_params["mu"].set_value(post_mu)
    mean_field.shared_params["rho"].set_value(np.log(np.exp(post_sigma) - 1))

    f = aesara.function([], elbo)
    elbo_mc = f()

    # Exact value
    elbo_true = -0.5 * (3 + 3 * post_mu**2 - 2 *
                        (y_obs[0] + y_obs[1] + mu0) * post_mu + y_obs[0]**2 +
                        y_obs[1]**2 + mu0**2 +
                        3 * np.log(2 * np.pi)) + 0.5 * (np.log(2 * np.pi) + 1)
    np.testing.assert_allclose(elbo_mc, elbo_true, rtol=0, atol=1e-1)
Exemplo n.º 3
0
def test_elbo_beta_kl(aux_total_size):
    mu0 = 1.5
    sigma = 1.0
    y_obs = np.array([1.6, 1.4])
    beta = len(y_obs) / float(aux_total_size)

    with aesara.config.change_flags(floatX="float64", warn_float64="ignore"):

        post_mu = np.array([1.88], dtype=aesara.config.floatX)
        post_sigma = np.array([1], dtype=aesara.config.floatX)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y",
                      mu=mu,
                      sigma=1,
                      observed=y_obs,
                      total_size=aux_total_size)
            # Create variational gradient tensor
            mean_field_1 = MeanField()
            mean_field_1.scale_cost_to_minibatch = True
            mean_field_1.shared_params["mu"].set_value(post_mu)
            mean_field_1.shared_params["rho"].set_value(
                np.log(np.exp(post_sigma) - 1))

            with aesara.config.change_flags(compute_test_value="off"):
                elbo_via_total_size_scaled = -pm.operators.KL(mean_field_1)()(
                    10000)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y", mu=mu, sigma=1, observed=y_obs)
            # Create variational gradient tensor
            mean_field_3 = MeanField()
            mean_field_3.shared_params["mu"].set_value(post_mu)
            mean_field_3.shared_params["rho"].set_value(
                np.log(np.exp(post_sigma) - 1))

            with aesara.config.change_flags(compute_test_value="off"):
                elbo_via_beta_kl = -pm.operators.KL(mean_field_3,
                                                    beta=beta)()(10000)

        np.testing.assert_allclose(elbo_via_total_size_scaled.eval(),
                                   elbo_via_beta_kl.eval(),
                                   rtol=0,
                                   atol=1e-1)
Exemplo n.º 4
0
 def __init__(self, *args, **kwargs):
     super().__init__(MeanField(*args, **kwargs))
Exemplo n.º 5
0
def three_var_approx_single_group_mf(three_var_model):
    return MeanField(model=three_var_model)