Exemplo n.º 1
0
 def test_step_categorical(self):
     start, model, (mu, C) = simple_categorical()
     unc = C ** 0.5
     check = (("x", np.mean, mu, unc / 10.0), ("x", np.std, unc, unc / 10.0))
     with model:
         steps = (
             CategoricalGibbsMetropolis(model.x, proposal="uniform"),
             CategoricalGibbsMetropolis(model.x, proposal="proportional"),
         )
     for step in steps:
         trace = sample(8000, tune=0, step=step, start=start, model=model, random_seed=1)
         self.check_stat(check, trace, step.__class__.__name__)
Exemplo n.º 2
0
 def test_step_categorical(self):
     start, model, (mu, C) = simple_categorical()
     unc = C ** .5
     check = (('x', np.mean, mu, unc / 10.),
              ('x', np.std, unc, unc / 10.))
     with model:
         steps = (
             CategoricalGibbsMetropolis(model.x, proposal='uniform'),
             CategoricalGibbsMetropolis(model.x, proposal='proportional'),
         )
     for step in steps:
         trace = sample(8000, step=step, start=start, model=model, random_seed=1)
         yield self.check_stat, check, trace, step.__class__.__name__