Exemplo n.º 1
0
 def posterior_to_xarray(self):
     """Convert the posterior to an xarray dataset."""
     var_names = get_default_varnames(self.trace.varnames,
                                      include_transformed=False)
     data = {}
     data_warmup = {}
     for var_name in var_names:
         if self.warmup_trace:
             data_warmup[var_name] = np.array(
                 self.warmup_trace.get_values(var_name,
                                              combine=False,
                                              squeeze=False))
         if self.posterior_trace:
             data[var_name] = np.array(
                 self.posterior_trace.get_values(var_name,
                                                 combine=False,
                                                 squeeze=False))
     return (
         dict_to_dataset(
             data,
             library=pymc3,
             coords=self.coords,
             dims=self.dims,
             attrs=self.attrs,
             index_origin=self.index_origin,
         ),
         dict_to_dataset(
             data_warmup,
             library=pymc3,
             coords=self.coords,
             dims=self.dims,
             attrs=self.attrs,
             index_origin=self.index_origin,
         ),
     )
Exemplo n.º 2
0
def get_point(wrapper, x):
    vars = get_default_varnames(wrapper.model.unobserved_RVs, True)
    return {
        var.name: value
        for var, value in zip(vars,
                              wrapper.model.fastfn(vars)(wrapper.bij.rmap(x)))
    }
Exemplo n.º 3
0
 def __init__(self, model):
     self.model = model
     self.var_names = get_default_varnames(self.model.named_vars,
                                           include_transformed=False)
     self.var_list = self.model.named_vars.values()
     self.transform_map = {
         v.transformed: v.name
         for v in self.var_list if hasattr(v, "transformed")
     }
     self._deterministics = None
Exemplo n.º 4
0
    def __init__(self, model=None):

        # Get the model
        self.model = pm.modelcontext(model)

        # Get the variables
        self.varnames = get_default_varnames(self.model.unobserved_RVs, False)

        # Get the starting point
        self.start = Point(self.model.test_point, model=self.model)
        self.ndim = len(self.start)
        self.mean = None
        self.cov = None

        # Compile the log probability function
        self.vars = inputvars(self.model.cont_vars)
        self.bij = DictToArrayBijection(ArrayOrdering(self.vars), self.start)
        self.func = get_theano_function_for_var(
            self.model.logpt, model=self.model
        )
Exemplo n.º 5
0
def trace_to_dataframe(trace,
                       chains=None,
                       varnames=None,
                       include_transformed=False):
    """Convert trace to pandas DataFrame.

    Parameters
    ----------
    trace: NDarray trace
    chains: int or list of ints
        Chains to include. If None, all chains are used. A single
        chain value can also be given.
    varnames: list of variable names
        Variables to be included in the DataFrame, if None all variable are
        included.
    include_transformed: boolean
        If true transformed variables will be included in the resulting
        DataFrame.
    """
    warnings.warn(
        "The `trace_to_dataframe` function will soon be removed. "
        "Please use ArviZ to save traces. "
        "If you have good reasons for using the `trace_to_dataframe` function, file an issue and tell us about them. ",
        DeprecationWarning,
    )
    var_shapes = trace._straces[0].var_shapes

    if varnames is None:
        varnames = get_default_varnames(
            var_shapes.keys(), include_transformed=include_transformed)

    flat_names = {v: create_flat_names(v, var_shapes[v]) for v in varnames}

    var_dfs = []
    for v in varnames:
        vals = trace.get_values(v, combine=True, chains=chains)
        flat_vals = vals.reshape(vals.shape[0], -1)
        var_dfs.append(pd.DataFrame(flat_vals, columns=flat_names[v]))
    return pd.concat(var_dfs, axis=1)
Exemplo n.º 6
0
def optimize(start=None,
             vars=None,
             model=None,
             return_info=False,
             verbose=True,
             **kwargs):
    """Maximize the log prob of a PyMC3 model using scipy

    All extra arguments are passed directly to the ``scipy.optimize.minimize``
    function.

    Args:
        start: The PyMC3 coordinate dictionary of the starting position
        vars: The variables to optimize
        model: The PyMC3 model
        return_info: Return both the coordinate dictionary and the result of
            ``scipy.optimize.minimize``
        verbose: Print the success flag and log probability to the screen

    """
    from scipy.optimize import minimize

    model = pm.modelcontext(model)

    # Work out the full starting coordinates
    if start is None:
        start = model.test_point
    else:
        update_start_vals(start, model.test_point, model)

    # Fit all the parameters by default
    if vars is None:
        vars = model.cont_vars
    vars = inputvars(vars)
    allinmodel(vars, model)

    # Work out the relevant bijection map
    start = Point(start, model=model)
    bij = DictToArrayBijection(ArrayOrdering(vars), start)

    # Pre-compile the theano model and gradient
    nlp = -model.logpt
    grad = theano.grad(nlp, vars, disconnected_inputs="ignore")
    func = get_theano_function_for_var([nlp] + grad, model=model)

    if verbose:
        names = [
            get_untransformed_name(v.name)
            if is_transformed_name(v.name) else v.name for v in vars
        ]
        sys.stderr.write("optimizing logp for variables: [{0}]\n".format(
            ", ".join(names)))
        bar = tqdm.tqdm()

    # This returns the objective function and its derivatives
    def objective(vec):
        res = func(*get_args_for_theano_function(bij.rmap(vec), model=model))
        d = dict(zip((v.name for v in vars), res[1:]))
        g = bij.map(d)
        if verbose:
            bar.set_postfix(logp="{0:e}".format(-res[0]))
            bar.update()
        return res[0], g

    # Optimize using scipy.optimize
    x0 = bij.map(start)
    initial = objective(x0)[0]
    kwargs["jac"] = True
    info = minimize(objective, x0, **kwargs)

    # Only accept the output if it is better than it was
    x = info.x if (np.isfinite(info.fun) and info.fun < initial) else x0

    # Coerce the output into the right format
    vars = get_default_varnames(model.unobserved_RVs, True)
    point = {
        var.name: value
        for var, value in zip(vars,
                              model.fastfn(vars)(bij.rmap(x)))
    }

    if verbose:
        bar.close()
        sys.stderr.write("message: {0}\n".format(info.message))
        sys.stderr.write("logp: {0} -> {1}\n".format(-initial, -info.fun))
        if not np.isfinite(info.fun):
            logger.warning("final logp not finite, returning initial point")
            logger.warning(
                "this suggests that something is wrong with the model")
            logger.debug("{0}".format(info))

    if return_info:
        return point, info
    return point
Exemplo n.º 7
0
def find_MAP(start=None,
             vars=None,
             method="L-BFGS-B",
             return_raw=False,
             include_transformed=True,
             progressbar=True,
             maxeval=5000,
             model=None,
             *args,
             **kwargs):
    """
    Finds the local maximum a posteriori point given a model.

    find_MAP should not be used to initialize the NUTS sampler. Simply call pymc3.sample() and it will automatically initialize NUTS in a better way.

    Parameters
    ----------
    start: `dict` of parameter values (Defaults to `model.test_point`)
    vars: list
        List of variables to optimize and set to optimum (Defaults to all continuous).
    method: string or callable
        Optimization algorithm (Defaults to 'L-BFGS-B' unless
        discrete variables are specified in `vars`, then
        `Powell` which will perform better).  For instructions on use of a callable,
        refer to SciPy's documentation of `optimize.minimize`.
    return_raw: bool
        Whether to return the full output of scipy.optimize.minimize (Defaults to `False`)
    include_transformed: bool, optional defaults to True
        Flag for reporting automatically transformed variables in addition
        to original variables.
    progressbar: bool, optional defaults to True
        Whether or not to display a progress bar in the command line.
    maxeval: int, optional, defaults to 5000
        The maximum number of times the posterior distribution is evaluated.
    model: Model (optional if in `with` context)
    *args, **kwargs
        Extra args passed to scipy.optimize.minimize

    Notes
    -----
    Older code examples used find_MAP() to initialize the NUTS sampler,
    but this is not an effective way of choosing starting values for sampling.
    As a result, we have greatly enhanced the initialization of NUTS and
    wrapped it inside pymc3.sample() and you should thus avoid this method.
    """
    model = modelcontext(model)
    if start is None:
        start = model.test_point
    else:
        update_start_vals(start, model.test_point, model)

    check_start_vals(start, model)

    if vars is None:
        vars = model.cont_vars
    vars = inputvars(vars)
    disc_vars = list(typefilter(vars, discrete_types))
    allinmodel(vars, model)

    start = Point(start, model=model)
    bij = DictToArrayBijection(ArrayOrdering(vars), start)
    logp_func = bij.mapf(model.fastlogp_nojac)
    x0 = bij.map(start)

    try:
        dlogp_func = bij.mapf(model.fastdlogp_nojac(vars))
        compute_gradient = True
    except (AttributeError, NotImplementedError, tg.NullTypeGradError):
        compute_gradient = False

    if disc_vars or not compute_gradient:
        pm._log.warning(
            "Warning: gradient not available." +
            "(E.g. vars contains discrete variables). MAP " +
            "estimates may not be accurate for the default " +
            "parameters. Defaulting to non-gradient minimization " +
            "'Powell'.")
        method = "Powell"

    if "fmin" in kwargs:
        fmin = kwargs.pop("fmin")
        warnings.warn(
            "In future versions, set the optimization algorithm with a string. "
            'For example, use `method="L-BFGS-B"` instead of '
            '`fmin=sp.optimize.fmin_l_bfgs_b"`.')

        cost_func = CostFuncWrapper(maxeval, progressbar, logp_func)

        # Check to see if minimization function actually uses the gradient
        if "fprime" in getargspec(fmin).args:

            def grad_logp(point):
                return nan_to_num(-dlogp_func(point))

            opt_result = fmin(cost_func, x0, fprime=grad_logp, *args, **kwargs)
        else:
            # Check to see if minimization function uses a starting value
            if "x0" in getargspec(fmin).args:
                opt_result = fmin(cost_func, x0, *args, **kwargs)
            else:
                opt_result = fmin(cost_func, *args, **kwargs)

        if isinstance(opt_result, tuple):
            mx0 = opt_result[0]
        else:
            mx0 = opt_result
    else:
        # remove 'if' part, keep just this 'else' block after version change
        if compute_gradient:
            cost_func = CostFuncWrapper(maxeval, progressbar, logp_func,
                                        dlogp_func)
        else:
            cost_func = CostFuncWrapper(maxeval, progressbar, logp_func)

        try:
            opt_result = minimize(cost_func,
                                  x0,
                                  method=method,
                                  jac=compute_gradient,
                                  *args,
                                  **kwargs)
            mx0 = opt_result["x"]  # r -> opt_result
        except (KeyboardInterrupt, StopIteration) as e:
            mx0, opt_result = cost_func.previous_x, None
            if isinstance(e, StopIteration):
                pm._log.info(e)
        finally:
            last_v = cost_func.n_eval
            if progressbar:
                assert isinstance(cost_func.progress, ProgressBar)
                cost_func.progress.total = last_v
                cost_func.progress.update(last_v)
                print()

    vars = get_default_varnames(model.unobserved_RVs, include_transformed)
    mx = {
        var.name: value
        for var, value in zip(vars,
                              model.fastfn(vars)(bij.rmap(mx0)))
    }

    if return_raw:
        return mx, opt_result
    else:
        return mx
Exemplo n.º 8
0
def find_MAP(start=None,
             vars=None,
             method="L-BFGS-B",
             return_raw=False,
             include_transformed=True,
             progressbar=True,
             maxeval=5000,
             model=None,
             *args,
             **kwargs):
    """Finds the local maximum a posteriori point given a model.

    `find_MAP` should not be used to initialize the NUTS sampler. Simply call
    ``pymc3.sample()`` and it will automatically initialize NUTS in a better
    way.

    Parameters
    ----------
    start: `dict` of parameter values (Defaults to `model.initial_point`)
    vars: list
        List of variables to optimize and set to optimum (Defaults to all continuous).
    method: string or callable
        Optimization algorithm (Defaults to 'L-BFGS-B' unless
        discrete variables are specified in `vars`, then
        `Powell` which will perform better).  For instructions on use of a callable,
        refer to SciPy's documentation of `optimize.minimize`.
    return_raw: bool
        Whether to return the full output of scipy.optimize.minimize (Defaults to `False`)
    include_transformed: bool, optional defaults to True
        Flag for reporting automatically transformed variables in addition
        to original variables.
    progressbar: bool, optional defaults to True
        Whether or not to display a progress bar in the command line.
    maxeval: int, optional, defaults to 5000
        The maximum number of times the posterior distribution is evaluated.
    model: Model (optional if in `with` context)
    *args, **kwargs
        Extra args passed to scipy.optimize.minimize

    Notes
    -----
    Older code examples used `find_MAP` to initialize the NUTS sampler,
    but this is not an effective way of choosing starting values for sampling.
    As a result, we have greatly enhanced the initialization of NUTS and
    wrapped it inside ``pymc3.sample()`` and you should thus avoid this method.
    """
    model = modelcontext(model)

    if vars is None:
        vars = model.cont_vars
        if not vars:
            raise ValueError("Model has no unobserved continuous variables.")
    vars = inputvars(vars)
    disc_vars = list(typefilter(vars, discrete_types))
    allinmodel(vars, model)
    start = copy.deepcopy(start)
    if start is None:
        start = model.initial_point
    else:
        model.update_start_vals(start, model.initial_point)
    model.check_start_vals(start)

    start = Point(start, model=model)

    x0 = DictToArrayBijection.map(start)

    # TODO: If the mapping is fixed, we can simply create graphs for the
    # mapping and avoid all this bijection overhead
    def logp_func(x):
        return DictToArrayBijection.mapf(model.fastlogp_nojac)(RaveledVars(
            x, x0.point_map_info))

    try:
        # This might be needed for calls to `dlogp_func`
        # start_map_info = tuple((v.name, v.shape, v.dtype) for v in vars)

        def dlogp_func(x):
            return DictToArrayBijection.mapf(model.fastdlogp_nojac(vars))(
                RaveledVars(x, x0.point_map_info))

        compute_gradient = True
    except (AttributeError, NotImplementedError, tg.NullTypeGradError):
        compute_gradient = False

    if disc_vars or not compute_gradient:
        pm._log.warning(
            "Warning: gradient not available." +
            "(E.g. vars contains discrete variables). MAP " +
            "estimates may not be accurate for the default " +
            "parameters. Defaulting to non-gradient minimization " +
            "'Powell'.")
        method = "Powell"

    if compute_gradient:
        cost_func = CostFuncWrapper(maxeval, progressbar, logp_func,
                                    dlogp_func)
    else:
        cost_func = CostFuncWrapper(maxeval, progressbar, logp_func)

    try:
        opt_result = minimize(cost_func,
                              x0.data,
                              method=method,
                              jac=compute_gradient,
                              *args,
                              **kwargs)
        mx0 = opt_result["x"]  # r -> opt_result
    except (KeyboardInterrupt, StopIteration) as e:
        mx0, opt_result = cost_func.previous_x, None
        if isinstance(e, StopIteration):
            pm._log.info(e)
    finally:
        last_v = cost_func.n_eval
        if progressbar:
            assert isinstance(cost_func.progress, ProgressBar)
            cost_func.progress.total = last_v
            cost_func.progress.update(last_v)
            print()

    mx0 = RaveledVars(mx0, x0.point_map_info)

    vars = get_default_varnames(model.unobserved_value_vars,
                                include_transformed)
    mx = {
        var.name: value
        for var, value in zip(
            vars,
            model.fastfn(vars)(DictToArrayBijection.rmap(mx0)))
    }

    if return_raw:
        return mx, opt_result
    else:
        return mx