def generate_random_piecewise_linear(gi_min=0,
                                     gi_max=1,
                                     n_segments=3,
                                     ui_min=0,
                                     ui_max=1,
                                     k=3):
    d = ui_max - ui_min
    r = [ui_min + d * round(random.random(), k) for i in range(n_segments - 1)]
    r.append(ui_min)
    r.append(ui_max)
    r.sort()

    interval = (gi_max - gi_min) / n_segments

    f = PiecewiseLinear([])
    for i in range(n_segments):
        a = Point(round(gi_min + i * interval, k), r[i])
        b = Point(round(gi_min + (i + 1) * interval, k), r[i + 1])
        s = Segment("s%d" % (i + 1), a, b)

        f.append(s)

    s.p1_in = True
    s.p2_in = True

    return f
Exemplo n.º 2
0
    def solve_cplex(self, aa, pt):
        self.lp.solve()

        status = self.lp.solution.get_status()
        if status != self.lp.solution.status.optimal:
            raise RuntimeError("Solver status: %s" % status)

        obj = self.lp.solution.get_objective_value()

        cfs = CriteriaFunctions()
        cvs = CriteriaValues()
        for cs in self.cs:
            cv = CriterionValue(cs.id, 1)
            cvs.append(cv)

            nseg = cs.value
            x_points = range(nseg)

            p1 = Point(self.points[cs.id][0], 0)

            ui = 0
            f = PiecewiseLinear([])
            for i in x_points:
                uivar = 'w_' + cs.id + "_%d" % (i + 1)
                ui += self.lp.solution.get_values(uivar)

                x = self.points[cs.id][i + 1]

                p2 = Point(x, ui)

                s = Segment("s%d" % (i + 1), p1, p2)
                f.append(s)

                p1 = p2

            s.p1_in = True
            s.p2_in = True
            cf = CriterionFunction(cs.id, f)
            cfs.append(cf)

        cat = {v: k for k, v in self.cat.items()}
        catv = CategoriesValues()
        ui_a = 0
        for i in range(1, len(cat)):
            ui_b = self.lp.solution.get_values("u_%d" % i)
            catv.append(CategoryValue(cat[i], Interval(ui_a, ui_b)))
            ui_a = ui_b

        catv.append(CategoryValue(cat[i + 1], Interval(ui_a, 1)))

        return obj, cvs, cfs, catv
Exemplo n.º 3
0
    def solve_cplex(self, aa, pt):
        self.lp.solve()

        status = self.lp.solution.get_status()
        if status != self.lp.solution.status.optimal:
            raise RuntimeError("Solver status: %s" % status)

        obj = self.lp.solution.get_objective_value()

        cfs = CriteriaFunctions()
        cvs = CriteriaValues()
        for cs in self.cs:
            cv = CriterionValue(cs.id, 1)
            cvs.append(cv)

            nseg = cs.value
            x_points = range(nseg)

            p1 = Point(self.points[cs.id][0], 0)

            ui = 0
            f = PiecewiseLinear([])
            for i in x_points:
                uivar = 'w_' + cs.id + "_%d" % (i + 1)
                ui += self.lp.solution.get_values(uivar)

                x = self.points[cs.id][i + 1]

                p2 = Point(x, ui)

                s = Segment("s%d" % (i + 1), p1, p2)
                f.append(s)

                p1 = p2

            s.p1_in = True
            s.p2_in = True
            cf = CriterionFunction(cs.id, f)
            cfs.append(cf)

        cat = {v: k for k, v in self.cat.items()}
        catv = CategoriesValues()
        ui_a = 0
        for i in range(1, len(cat)):
            ui_b = self.lp.solution.get_values("u_%d" % i)
            catv.append(CategoryValue(cat[i], Interval(ui_a, ui_b)))
            ui_a = ui_b

        catv.append(CategoryValue(cat[i + 1], Interval(ui_a, 1)))

        return obj, cvs, cfs, catv
Exemplo n.º 4
0
    def solve_glpk(self, aa, pt):
        self.lp.solve()

        status = self.lp.status()
        if status != 'opt':
            raise RuntimeError("Solver status: %s" % self.lp.status())

        obj = self.lp.vobj()

        cfs = CriteriaFunctions()
        cvs = CriteriaValues()
        for cid, points in self.points.items():
            cv = CriterionValue(cid, 1)
            cvs.append(cv)

            p1 = Point(self.points[cid][0], 0)

            ui = 0
            f = PiecewiseLinear([])
            for i in range(len(points) - 1):
                uivar = 'w_' + cid + "_%d" % (i + 1)
                ui += self.w[cid][i].primal
                p2 = Point(self.points[cid][i + 1], ui)

                s = Segment(p1, p2)

                f.append(s)

                p1 = p2

            s.p2_in = True
            cf = CriterionFunction(cid, f)
            cfs.append(cf)

        cat = {v: k for k, v in self.cat.items()}
        catv = CategoriesValues()
        ui_a = 0
        for i in range(0, len(cat) - 1):
            ui_b = self.u[i].primal
            catv.append(CategoryValue(cat[i + 1], Interval(ui_a, ui_b)))
            ui_a = ui_b

        catv.append(CategoryValue(cat[i + 2], Interval(ui_a, 1)))

        return obj, cvs, cfs, catv
Exemplo n.º 5
0
    def solve_glpk(self, aa, pt):
        self.lp.solve()

        status = self.lp.status()
        if status != 'opt':
            raise RuntimeError("Solver status: %s" % self.lp.status())

        obj = self.lp.vobj()

        cfs = CriteriaFunctions()
        cvs = CriteriaValues()
        for cid, points in self.points.items():
            cv = CriterionValue(cid, 1)
            cvs.append(cv)

            p1 = Point(self.points[cid][0], 0)

            ui = 0
            f = PiecewiseLinear([])
            for i in range(len(points) - 1):
                uivar = 'w_' + cid + "_%d" % (i + 1)
                ui += self.w[cid][i].primal
                p2 = Point(self.points[cid][i + 1], ui)

                s = Segment(p1, p2)

                f.append(s)

                p1 = p2

            s.p2_in = True
            cf = CriterionFunction(cid, f)
            cfs.append(cf)

        cat = {v: k for k, v in self.cat.items()}
        catv = CategoriesValues()
        ui_a = 0
        for i in range(0, len(cat) - 1):
            ui_b = self.u[i].primal
            catv.append(CategoryValue(cat[i + 1], Interval(ui_a, ui_b)))
            ui_a = ui_b

        catv.append(CategoryValue(cat[i + 2], Interval(ui_a, 1)))

        return obj, cvs, cfs, catv
Exemplo n.º 6
0
def generate_random_piecewise_linear(gi_min = 0, gi_max = 1, n_segments = 3,
                                     ui_min = 0, ui_max = 1, k = 3):
    d = ui_max - ui_min
    r = [ ui_min + d * round(random.random(), k)
          for i in range(n_segments - 1) ]
    r.append(ui_min)
    r.append(ui_max)
    r.sort()

    interval = (gi_max - gi_min) / n_segments

    f = PiecewiseLinear([])
    for i in range(n_segments):
        a = Point(round(gi_min + i * interval, k), r[i])
        b = Point(round(gi_min + (i + 1) * interval, k), r[i + 1])
        s = Segment("s%d" % (i + 1), a, b)

        f.append(s)

    s.p1_in = True
    s.p2_in = True

    return f