def init_evaluator() -> eval_.Evaluator:
    """Initializes an evaluator.

    Args:
        directory (str): The directory for the results file.
        result_file_name (str): The result file name (CSV file).

    Returns:
        eval.Evaluator: An evaluator.
    """
    # os.makedirs(directory, exist_ok=True)  # generate result directory, if it does not exists

    # evaluator = eval_.Evaluator(eval_.ConsoleEvaluatorWriter(5))
    evaluation_metrics = [metric.DiceCoefficient(), metric.HausdorffDistance()]
    # evaluation_metrics = [metric.DiceCoefficient(), metric.HausdorffDistance(), metric.Accuracy(), metric.CohenKappaCoefficient(), metric.ProbabilisticDistance()]
    evaluation_metrics = [metric.DiceCoefficient(), metric.HausdorffDistance(95), metric.CohenKappaCoefficient(), metric.Accuracy(),
                          metric.JaccardCoefficient(), metric.MutualInformation(), metric.Precision(), metric.VolumeSimilarity(), metric.AreaUnderCurve(),
                          metric.FalseNegative(),metric.FalsePositive(), metric.TruePositive(), metric.TrueNegative(),metric.Sensitivity(),metric.Specificity()]


    evaluation_metrics=[metric.DiceCoefficient(),metric.JaccardCoefficient(),metric.SurfaceDiceOverlap(),metric.Accuracy(),
                        metric.FMeasure(),metric.CohenKappaCoefficient(),metric.VolumeSimilarity(),metric.MutualInformation(),metric.AreaUnderCurve(),
                        metric.HausdorffDistance()]

    evaluator = eval_.SegmentationEvaluator(evaluation_metrics,{})
    # evaluator.add_writer(eval_.CSVEvaluatorWriter(os.path.join(directory, result_file_name)))
    evaluator.add_label(1, 'WhiteMatter')
    evaluator.add_label(2, 'GreyMatter')
    evaluator.add_label(3, 'Hippocampus')
    evaluator.add_label(4, 'Amygdala')
    evaluator.add_label(5, 'Thalamus')

    # warnings.warn('Initialized evaluation with the Dice coefficient. Do you know other suitable metrics?')
    # you should add more metrics than just the Hausdorff distance!
    return evaluator
Exemplo n.º 2
0
def init_evaluator(directory: str,
                   result_file_name: str = 'results.csv') -> eval_.Evaluator:
    """Initializes an evaluator.

    Args:
        directory (str): The directory for the results file.
        result_file_name (str): The result file name (CSV file).

    Returns:
        eval.Evaluator: An evaluator.
    """
    os.makedirs(
        directory,
        exist_ok=True)  # generate result directory, if it does not exists

    evaluator = eval_.Evaluator(eval_.ConsoleEvaluatorWriter(5))
    evaluator.add_writer(
        eval_.CSVEvaluatorWriter(os.path.join(directory, result_file_name)))
    evaluator.add_label(1, "WhiteMatter")
    evaluator.add_label(2, "GreyMatter")
    evaluator.add_label(3, "Hippocampus")
    evaluator.add_label(4, "Amygdala")
    evaluator.add_label(5, "Thalamus")
    evaluator.add_metric(metric.DiceCoefficient())
    evaluator.add_metric(metric.Specificity())
    evaluator.add_metric(metric.Sensitivity())
    evaluator.add_metric(metric.HausdorffDistance())

    return evaluator
Exemplo n.º 3
0
def init_evaluator(directory: str,
                   result_file_name: str = 'results.csv') -> eval_.Evaluator:
    """Initializes an evaluator.

    Args:
        directory (str): The directory for the results file.
        result_file_name (str): The result file name (CSV file).

    Returns:
        eval.Evaluator: An evaluator.
    """
    os.makedirs(
        directory,
        exist_ok=True)  # generate result directory, if it does not exists

    evaluator = eval_.Evaluator(eval_.ConsoleEvaluatorWriter(5))
    evaluator.add_writer(
        eval_.CSVEvaluatorWriter(os.path.join(directory, result_file_name)))
    evaluator.add_label(1, 'WhiteMatter')
    evaluator.add_label(2, 'GreyMatter')
    evaluator.add_label(3, 'Hippocampus')
    evaluator.add_label(4, 'Amygdala')
    evaluator.add_label(5, 'Thalamus')
    evaluator.metrics = [
        metric.DiceCoefficient(),
        metric.HausdorffDistance(95)
    ]  # Solutions
    # todo: add hausdorff distance, 95th percentile (see metric.HausdorffDistance)
    # evaluator.add_metric(metric.HausdorffDistance(95))
    # warnings.warn('Initialized evaluation with the Dice coefficient. Do you know other suitable metrics?')
    return evaluator
Exemplo n.º 4
0
def main(data_dir: str, result_file: str, result_summary_file: str):
    # initialize metrics
    metrics = [
        metric.DiceCoefficient(),
        metric.HausdorffDistance(percentile=95, metric='HDRFDST95'),
        metric.VolumeSimilarity()
    ]

    # define the labels to evaluate
    labels = {1: 'WHITEMATTER', 2: 'GREYMATTER', 5: 'THALAMUS'}

    evaluator = eval_.SegmentationEvaluator(metrics, labels)

    # get subjects to evaluate
    subject_dirs = [
        subject for subject in glob.glob(os.path.join(data_dir, '*'))
        if os.path.isdir(subject)
        and os.path.basename(subject).startswith('Subject')
    ]

    for subject_dir in subject_dirs:
        subject_id = os.path.basename(subject_dir)
        print(f'Evaluating {subject_id}...')

        # load ground truth image and create artificial prediction by erosion
        ground_truth = sitk.ReadImage(
            os.path.join(subject_dir, f'{subject_id}_GT.mha'))
        prediction = ground_truth
        for label_val in labels.keys():
            # erode each label we are going to evaluate
            prediction = sitk.BinaryErode(prediction, 1, sitk.sitkBall, 0,
                                          label_val)

        # evaluate the "prediction" against the ground truth
        evaluator.evaluate(prediction, ground_truth, subject_id)

    # use two writers to report the results
    writer.CSVWriter(result_file).write(evaluator.results)

    print('\nSubject-wise results...')
    writer.ConsoleWriter().write(evaluator.results)

    # report also mean and standard deviation among all subjects
    functions = {'MEAN': np.mean, 'STD': np.std}
    writer.CSVStatisticsWriter(result_summary_file,
                               functions=functions).write(evaluator.results)
    print('\nAggregated statistic results...')
    writer.ConsoleStatisticsWriter(functions=functions).write(
        evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()
def init_evaluator(write_to_console: bool = True,
                   csv_file: str = None,
                   calculate_distance_metrics: bool = False):
    evaluator = eval.Evaluator(EvaluatorAggregator())
    if write_to_console:
        evaluator.add_writer(eval.ConsoleEvaluatorWriter(5))
    if csv_file is not None:
        evaluator.add_writer(eval.CSVEvaluatorWriter(csv_file))
    if calculate_distance_metrics:
        evaluator.metrics = [
            pymia_metric.DiceCoefficient(),
            pymia_metric.HausdorffDistance(),
            pymia_metric.HausdorffDistance(percentile=95, metric='HDRFDST95'),
            pymia_metric.VolumeSimilarity()
        ]
    else:
        evaluator.metrics = [
            pymia_metric.DiceCoefficient(),
            pymia_metric.VolumeSimilarity()
        ]
    evaluator.add_label(1, cfg.FOREGROUND_NAME)
    return evaluator
Exemplo n.º 6
0
def init_evaluator() -> eval_.Evaluator:
    """Initializes an evaluator.

    Returns:
        eval.Evaluator: An evaluator.
    """

    # initialize metrics
    metrics = [metric.DiceCoefficient(), metric.HausdorffDistance(95.0)]

    # define the labels to evaluate
    labels = {
        1: 'WhiteMatter',
        2: 'GreyMatter',
        3: 'Hippocampus',
        4: 'Amygdala',
        5: 'Thalamus'
    }

    evaluator = eval_.SegmentationEvaluator(metrics, labels)
    return evaluator
Exemplo n.º 7
0
def init_evaluator() -> eval_.Evaluator:
    """Initializes an evaluator.

    Returns:
        eval.Evaluator: An evaluator.
    """

    # initialize metrics
    metrics = [metric.DiceCoefficient(), metric.HausdorffDistance(percentile=95)]
    # todo: add hausdorff distance, 95th percentile (see metric.HausdorffDistance)
    # warnings.warn('Initialized evaluation with the Dice coefficient. Do you know other suitable metrics?')

    # define the labels to evaluate
    labels = {1: 'WhiteMatter',
              2: 'GreyMatter',
              3: 'Hippocampus',
              4: 'Amygdala',
              5: 'Thalamus'
              }

    evaluator = eval_.SegmentationEvaluator(metrics, labels)
    return evaluator
def init_evaluator(directory: object, result_file_name: object = 'results.csv') -> object:
    """Initializes an evaluator.

    Args:
        directory (str): The directory for the results file.
        result_file_name (str): The result file name (CSV file).

    Returns:
        eval.Evaluator: An evaluator.
    """
    os.makedirs(directory, exist_ok=True)  # generate result directory, if it does not exists

    evaluator = eval_.Evaluator(eval_.ConsoleEvaluatorWriter(5))
    evaluator.add_writer(eval_.CSVEvaluatorWriter(os.path.join(directory, result_file_name)))
    evaluator.add_label(1, 'WhiteMatter')
    evaluator.add_label(2, 'GreyMatter')
    evaluator.add_label(3, 'Hippocampus')
    evaluator.add_label(4, 'Amygdala')
    evaluator.add_label(5, 'Thalamus')
    evaluator.metrics = [metric.DiceCoefficient(), metric.HausdorffDistance()]
    # warnings.warn('Initialized evaluation with the Dice coefficient. Do you know other suitable metrics?')
    # you should add more metrics than just the Hausdorff distance!
    return evaluator
Exemplo n.º 9
0
def load_atlas_custom_images(wdpath):
    # params_list = list(data_batch.items())
    # print(params_list[0] )
    t1w_list = []
    t2w_list = []
    gt_label_list = []
    brain_mask_list = []
    transform_list = []

    #Load the train labels_native with their transform
    for dirpath, subdirs, files in os.walk(wdpath):
        # print("dirpath", dirpath)
        # print("subdirs", subdirs)
        # print("files", files)
        for x in files:
            if x.endswith("T1native.nii.gz"):
                t1w_list.append(sitk.ReadImage(os.path.join(dirpath, x)))
            elif x.endswith("T2native.nii.gz"):
                t2w_list.append(sitk.ReadImage(os.path.join(dirpath, x)))
            elif x.endswith("labels_native.nii.gz"):
                gt_label_list.append(sitk.ReadImage(os.path.join(dirpath, x)))
            elif x.endswith("Brainmasknative.nii.gz"):
                brain_mask_list.append(sitk.ReadImage(os.path.join(dirpath,
                                                                   x)))
            elif x.endswith("affine.txt"):
                transform_list.append(
                    sitk.ReadTransform(os.path.join(dirpath, x)))
            # else:
            #     print("Problem in CustomAtlas in folder", dirpath)

    #Resample and thershold to get the label
    white_matter_list = []
    grey_matter_list = []
    hippocampus_list = []
    amygdala_list = []
    thalamus_list = []
    for i in range(0, len(gt_label_list)):
        resample_img = sitk.Resample(gt_label_list[i], atlas_t1,
                                     transform_list[i],
                                     sitk.sitkNearestNeighbor, 0,
                                     gt_label_list[i].GetPixelIDValue())
        white_matter_list.append(sitk.Threshold(resample_img, 1, 1, 0))
        grey_matter_list.append(sitk.Threshold(resample_img, 2, 2, 0))
        hippocampus_list.append(sitk.Threshold(resample_img, 3, 3, 0))
        amygdala_list.append(sitk.Threshold(resample_img, 4, 4, 0))
        thalamus_list.append(sitk.Threshold(resample_img, 5, 5, 0))

    #Save each label from first data
    path_to_save = '../bin/custom_atlas_result/'
    if not os.path.exists(path_to_save):
        os.makedirs(path_to_save)
    sitk.WriteImage(hippocampus_list[0],
                    os.path.join(path_to_save, 'Hippocampus_label.nii'), True)
    sitk.WriteImage(white_matter_list[0],
                    os.path.join(path_to_save, 'White_matter_label.nii'), True)
    sitk.WriteImage(grey_matter_list[0],
                    os.path.join(path_to_save, 'Grey_matter_label.nii'), True)
    sitk.WriteImage(amygdala_list[0],
                    os.path.join(path_to_save, 'Amygdala_label.nii'), True)
    sitk.WriteImage(thalamus_list[0],
                    os.path.join(path_to_save, 'Thalamus_label.nii'), True)

    #Save an image resampled to show segmentation
    sitk.WriteImage(gt_label_list[0],
                    os.path.join(path_to_save, 'Train_image_1_resampled.nii'),
                    True)

    # sum them up and divide by their number of images to make a probability map
    white_matter_map = 0
    grey_matter_map = 0
    hippocampus_map = 0
    amygdala_map = 0
    thalamus_map = 0
    for i in range(1, len(gt_label_list)):
        white_matter_map = sitk.Add(white_matter_map, white_matter_list[i])
        grey_matter_map = sitk.Add(grey_matter_map, grey_matter_list[i])
        hippocampus_map = sitk.Add(hippocampus_map, hippocampus_list[i])
        amygdala_map = sitk.Add(amygdala_map, amygdala_list[i])
        thalamus_map = sitk.Add(thalamus_map, thalamus_list[i])

    white_matter_map = sitk.Divide(white_matter_map, len(white_matter_list))
    grey_matter_map = sitk.Divide(grey_matter_map, len(grey_matter_list))
    hippocampus_map = sitk.Divide(hippocampus_map, len(hippocampus_list))
    amygdala_map = sitk.Divide(amygdala_map, len(amygdala_list))
    thalamus_map = sitk.Divide(thalamus_map, len(thalamus_list))
    #atlas = sitk.Divide(sum_images, len(test_resample))
    #slice = sitk.GetArrayFromImage(atlas)[90,:,:]
    #plt.imshow(slice)

    #Register without threshold
    path_to_save = '../bin/custom_atlas_result/'
    if not os.path.exists(path_to_save):
        os.makedirs(path_to_save)
    sitk.WriteImage(
        grey_matter_map,
        os.path.join(path_to_save, 'grey_matter_map_no_threshold.nii'), True)
    sitk.WriteImage(
        white_matter_map,
        os.path.join(path_to_save, 'white_matter_map_no_threshold.nii'), True)
    sitk.WriteImage(
        hippocampus_map,
        os.path.join(path_to_save, 'hippocampus_map_no_threshold.nii'), True)
    sitk.WriteImage(
        amygdala_map,
        os.path.join(path_to_save, 'amygdala_map_no_threshold.nii'), True)
    sitk.WriteImage(
        thalamus_map,
        os.path.join(path_to_save, 'thalamus_map_no_threshold.nii'), True)

    #Threhold the 5 different maps to get a binary map
    white_matter_map = sitk.BinaryThreshold(white_matter_map, 0.3, 1, 1, 0)
    grey_matter_map = sitk.BinaryThreshold(grey_matter_map, 0.6, 2, 2, 0)
    hippocampus_map = sitk.BinaryThreshold(hippocampus_map, 0.9, 3, 3, 0)
    amygdala_map = sitk.BinaryThreshold(amygdala_map, 1.2, 4, 4, 0)
    thalamus_map = sitk.BinaryThreshold(thalamus_map, 1.5, 5, 5, 0)

    #Save the images
    path_to_save = '../bin/custom_atlas_result/'
    if not os.path.exists(path_to_save):
        os.makedirs(path_to_save)
    sitk.WriteImage(grey_matter_map,
                    os.path.join(path_to_save, 'grey_matter_map.nii'), True)
    sitk.WriteImage(white_matter_map,
                    os.path.join(path_to_save, 'white_matter_map.nii'), True)
    sitk.WriteImage(hippocampus_map,
                    os.path.join(path_to_save, 'hippocampus_map.nii'), True)
    sitk.WriteImage(amygdala_map, os.path.join(path_to_save,
                                               'amygdala_map.nii'), True)
    sitk.WriteImage(thalamus_map, os.path.join(path_to_save,
                                               'thalamus_map.nii'), True)

    # Load the test labels_native and their transform
    path_to_test = '../data/test'
    test_gt_label_list = []
    test_transform_list = []

    for dirpath, subdirs, files in os.walk(path_to_test):
        for x in files:
            if x.endswith("labels_native.nii.gz"):
                test_gt_label_list.append(
                    sitk.ReadImage(os.path.join(dirpath, x)))
            if x.endswith("affine.txt"):
                test_transform_list.append(
                    sitk.ReadTransform(os.path.join(dirpath, x)))

    #Resample the labels_native with the transform
    test_resample_img = []
    for i in range(0, len(test_gt_label_list)):
        resample_img = sitk.Resample(test_gt_label_list[i], atlas_t1,
                                     test_transform_list[i],
                                     sitk.sitkNearestNeighbor, 0,
                                     test_gt_label_list[i].GetPixelIDValue())

        test_resample_img.append(resample_img)

    sitk.WriteImage(test_resample_img[0],
                    os.path.join(path_to_save, 'Test_data_1_resampled.nii'),
                    True)

    # Save the first test patient labels
    # path_to_save = '../bin/temp_test_result/'
    # if not os.path.exists(path_to_save):
    #     os.makedirs(path_to_save)
    # sitk.WriteImage(test_resample_img[0], os.path.join(path_to_save, 'FirstPatienFromTestList.nii'), False)

    #Compute the dice coeefficent (and the Hausdorff distance)
    label_list = [
        'White Matter', 'Grey Matter', 'Hippocampus', 'Amygdala', 'Thalamus'
    ]
    map_list = [
        white_matter_map, grey_matter_map, hippocampus_map, amygdala_map,
        thalamus_map
    ]
    dice_list = []

    path_to_save = '../bin/DiceTestResult/'
    if not os.path.exists(path_to_save):
        os.makedirs(path_to_save)
    for i in range(0, 5):
        evaluator = eval_.Evaluator(eval_.ConsoleEvaluatorWriter(5))
        evaluator.metrics = [
            metric.DiceCoefficient(),
            metric.HausdorffDistance()
        ]
        evaluator.add_writer(
            eval_.CSVEvaluatorWriter(
                os.path.join(path_to_save,
                             'DiceResults_' + label_list[i] + '.csv')))
        evaluator.add_label(i + 1, label_list[i])
        for j in range(0, len(test_resample_img)):
            evaluator.evaluate(test_resample_img[j], map_list[i],
                               'Patient ' + str(j))

    print("END Custom loadAtlas")