data = np.genfromtxt("raw CVR.csv", delimiter=",") reps = 100 performance = [] train_size = 35 test_size = 400 total_elems = range(len(data)) train_elems = r.sample(total_elems, train_size) test_elems = [x for x in total_elems if x not in train_elems] single_err = 0 start = time.time() for rep in range(reps): test_net = Net(len(data[0, 0:-2]), 1, 3, 3, 3) for n in xrange(1000): train_err = 0 accuracy = 0 for i in train_elems: single_err = test_net.err(data[i, 0:-2], data[i, -1]) output = test_net.feedforward(data[i, 0:-2])[0] if abs(output - data[i, 0]) < 1: accuracy += 1 print "SINGLE RUN ERR: %f" % (single_err) train_err += single_err train_err /= len(train_elems) accuracy = float(accuracy) / train_size print "MEAN RUN ERR: %f\n" % (train_err) print "MEAN RUN ACC: %f\n" % (accuracy) raw_input("Enter...")