Exemplo n.º 1
0
def test_save_to_json(tmp_path, ecoli_obj):
    fname = str(tmp_path / "ecoli_obj.json")
    save_to_json(ecoli_obj, fname)
    assert isfile(fname)

    new_icd = load_json_model(fname)
    # Data
    assert np.allclose(new_icd.M, ecoli_obj.M)
    assert np.allclose(new_icd.A, ecoli_obj.A)
    assert np.allclose(new_icd.X, ecoli_obj.X)
    # Names
    assert new_icd.imodulon_names == ecoli_obj.imodulon_names
    assert new_icd.sample_names == ecoli_obj.sample_names
    assert new_icd.gene_names == ecoli_obj.gene_names
    # Tables
    assert new_icd.gene_table.equals(ecoli_obj.gene_table.replace("", np.nan))
    assert new_icd.sample_table.equals(
        ecoli_obj.sample_table.replace("", np.nan))
    assert new_icd.imodulon_table.equals(
        ecoli_obj.imodulon_table.replace("", np.nan))
    # Thresholds
    assert np.allclose(
        [new_icd.thresholds[x] for x in new_icd.imodulon_names],
        [ecoli_obj.thresholds[x] for x in ecoli_obj.imodulon_names],
    )
    assert new_icd.cutoff_optimized == ecoli_obj.cutoff_optimized
    assert new_icd.dagostino_cutoff == ecoli_obj.dagostino_cutoff
Exemplo n.º 2
0
def load_bsub_data():
    """
    Load *Bacillus subtilis* :class:`~pymodulon.core.IcaData` object from
    :cite:`Rychel2020a`

    Returns
    -------
    bsub_data: ~pymodulon.core.IcaData
        *B. subtilis* :class:`~pymodulon.core.IcaData` object
    """
    return load_json_model(path.join(_data_dir, "objects", "bsub_data.json.gz"))
Exemplo n.º 3
0
def load_staph_data():
    """
    Load *Staphylococcus aureus* :class:`~pymodulon.core.IcaData` object from
    :cite:`Poudel2020`

    Returns
    -------
    staph_data: ~pymodulon.core.IcaData
        *S. aureus* :class:`~pymodulon.core.IcaData` object
    """
    return load_json_model(path.join(_data_dir, "objects", "staph_data.json.gz"))
Exemplo n.º 4
0
def load_ecoli_data():
    """
    Load *Escherichia coli* :class:`~pymodulon.core.IcaData` object from
    :cite:`Sastry2019`

    Returns
    -------
    ecoli_data: ~pymodulon.core.IcaData
        *E. coli* :class:`~pymodulon.core.IcaData` object
    """
    return load_json_model(path.join(_data_dir, "objects", "ecoli_data.json.gz"))
Exemplo n.º 5
0
def test_init_thresholds(ecoli_obj, mini_obj_opt, caplog, tmp_path):
    # Test all threshold initialization options
    M = mini_obj_opt.M
    A = mini_obj_opt.A

    # Reduce TRN size
    trn = ecoli_obj.trn.iloc[:10].copy()

    # Define custom thresholds
    thresh_list = list(np.arange(1, 2, 0.1))
    thresh_dict = dict(zip(M.columns, thresh_list))

    thresholds_opts = [None, thresh_dict]
    threshold_method_opts = ["kmeans", "dagostino"]
    trn_opts = [None, trn]
    optimize_cutoff_opts = [True, False]
    dagostino_cutoff_opts = [None, 600]

    for opt1 in thresholds_opts:
        for opt2 in threshold_method_opts:
            for opt3 in trn_opts:
                for opt4 in optimize_cutoff_opts:
                    for opt5 in dagostino_cutoff_opts:

                        caplog.clear()

                        obj1 = IcaData(
                            M,
                            A,
                            thresholds=opt1,
                            threshold_method=opt2,
                            trn=opt3,
                            optimize_cutoff=opt4,
                            dagostino_cutoff=opt5,
                        )

                        fname = str(tmp_path / "test_data.json")
                        save_to_json(obj1, fname)
                        obj2 = load_json_model(fname)

                        for obj in [obj1, obj2]:
                            if opt1 is not None:
                                assert obj.thresholds == thresh_dict
                                assert obj.dagostino_cutoff is None
                                assert not obj.cutoff_optimized

                                if opt4:  # optimize_cutoff == True
                                    assert caplog.messages == [
                                        "Using manually input thresholds. "
                                        "D'agostino optimization will not be "
                                        "performed."
                                    ]
                                else:
                                    assert caplog.text == ""

                            # opt1 == None
                            elif opt2 == "kmeans" or opt3 is None:
                                assert obj.dagostino_cutoff is None
                                assert not obj.cutoff_optimized
                                if opt4:  # optimize_cutoff == True
                                    assert caplog.messages == [
                                        "Using Kmeans threshold "
                                        "method. D'agostino optimization will not "
                                        "be performed."
                                    ]
                                else:
                                    assert caplog.text == ""

                            # opt2 == 'dagostino'
                            # opt3 == trn
                            elif opt4:
                                assert obj.cutoff_optimized
                                assert obj.dagostino_cutoff is not None
                                assert caplog.messages == [
                                    "Optimizing iModulon thresholds, may take "
                                    "2-3 minutes..."
                                ]
                            # opt4 == False
                            elif opt5 is None:
                                assert not obj.cutoff_optimized
                                assert obj.dagostino_cutoff == 550
                                assert caplog.messages == [
                                    "Using the default "
                                    "dagostino_cutoff of 550. This may not be "
                                    "optimal for your dataset. Use "
                                    "ica_data.reoptimize_thresholds() to find the "
                                    "optimal threshold."
                                ]
                            elif opt5 == 600:
                                assert not obj.cutoff_optimized
                                assert obj.dagostino_cutoff == 600
                            else:
                                raise ValueError("Missing test case!")