Exemplo n.º 1
0
    def test_rank_and_crowding_distance(self):
        for i, D in enumerate(self.data):

            survivor_and_last_front = np.where(D['rank'] != -1.0)[0]
            crowding = D['crowding'][survivor_and_last_front]
            rank = D['rank'][survivor_and_last_front].astype(np.int)
            F = D['F'][survivor_and_last_front, :]

            fronts, _rank = NonDominatedSorting().do(F, return_rank=True)
            _rank += 1
            _crowding = np.full(len(F), np.nan)
            for front in fronts:
                _crowding[front] = calc_crowding_distance(F[front])
            _crowding[np.isinf(_crowding)] = 1e14

            is_equal = np.all(rank == _rank)
            if not is_equal:
                index = np.where(rank == _rank)
                print(index)
                print(D['rank'][index])
                print(D['F'][index])

            self.assertTrue(is_equal)

            is_equal = np.all(np.abs(_crowding - crowding) < 0.001)
            if not is_equal:

                index = np.where(np.abs(_crowding - crowding) > 0.001)[0]
                index = index[np.argsort(rank[index])]

                # only an error if it is not a duplicate F value
                for i_not_equal in index:

                    if len(
                            np.where(np.all(F[i_not_equal, :] == F,
                                            axis=1))[0]) == 1:
                        print("-" * 30)
                        print("Generation: ", i)
                        print("Is rank equal: ", np.all(rank == _rank))

                        print(index)
                        print(rank[index])
                        print(F[index])
                        print(
                            np.concatenate(
                                [_crowding[:, None], crowding[:, None]],
                                axis=1)[index, :])
                        print()

                        self.assertTrue(is_equal)
Exemplo n.º 2
0
 def test_crowding_distance_norm_equals_zero(self):
     F = np.array([[1.0, 1.5, 0.5, 1.0], [1.0, 0.5, 1.5, 1.0],
                   [1.0, 0.0, 2.0, 1.5]])
     cd = calc_crowding_distance(F)
     self.assertTrue(
         np.all(np.isclose(cd, np.array([np.inf, 0.75, np.inf]))))
Exemplo n.º 3
0
 def test_crowding_distance_two_duplicates(self):
     F = np.array([[1.0, 1.0], [1.0, 1.0], [1.0, 1.0], [0.5, 1.5],
                   [0.0, 2.0]])
     cd = calc_crowding_distance(F)
     self.assertTrue(
         np.all(np.isclose(cd, np.array([np.inf, 0.0, 0.0, 1.0, np.inf]))))
Exemplo n.º 4
0
 def test_normalization(self):
     F = np.array([[0, 0], [0.5, 50], [1.0, 100]])
     cd = calc_crowding_distance(F)
     self.assertEqual(cd[1], 1)