Exemplo n.º 1
0
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim_domain=1),
            GenericFunction(lambda X: (X[..., 0] - 0.5) ** 2 * 1000, dim_domain=1)]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = GenericFunction(lambda X: 1 - X[..., 0], dim_domain=1)
    d1 = GenericFunction(lambda X: X[..., 0], dim_domain=1)

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = GenericParameterFunctional(lambda mu: 1, {})

    print('Solving on OnedGrid(({0},{0}))'.format(args['N']))

    print('Setup Problem ...')
    problem = EllipticProblem(domain=LineDomain(), rhs=rhs, diffusion_functions=(d0, d1),
                              diffusion_functionals=(f0, f1), dirichlet_data=ConstantFunction(value=0, dim_domain=1),
                              name='1DProblem')

    print('Discretize ...')
    discretizer = discretize_elliptic_fv if args['--fv'] else discretize_elliptic_cg
    discretization, _ = discretizer(problem, diameter=1 / args['N'])

    print('The parameter type is {}'.format(discretization.parameter_type))

    U = discretization.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(discretization.solve(mu))

    print('Plot ...')
    discretization.visualize(U, title='Solution for diffusionl in [0.1, 1]')
Exemplo n.º 2
0
def test_lincomb_function():
    for steps in (1, 10):
        x = np.linspace(0, 1, num=steps)
        zero = ConstantFunction(0.0, dim_domain=steps)
        for zero in (ConstantFunction(0.0, dim_domain=steps),
                     GenericFunction(lambda X: np.zeros(X.shape[:-1]),
                                     dim_domain=steps)):
            for one in (ConstantFunction(1.0, dim_domain=steps),
                        GenericFunction(lambda X: np.ones(X.shape[:-1]),
                                        dim_domain=steps), 1.0):
                add = (zero + one) + 0
                sub = (zero - one) + np.zeros(())
                neg = -zero
                assert np.allclose(sub(x), [-1])
                assert np.allclose(add(x), [1.0])
                assert np.allclose(neg(x), [0.0])
                (repr(add), str(add), repr(one), str(one)
                 )  # just to cover the respective special funcs too
                mul = neg * 1.
                assert np.allclose(mul(x), [0.0])
        with pytest.raises(AssertionError):
            zero + ConstantFunction(dim_domain=steps + 1)
        with pytest.raises(AssertionError):
            zero * ConstantFunction(dim_domain=steps)
    with pytest.raises(AssertionError):
        ConstantFunction(dim_domain=0)
Exemplo n.º 3
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = StationaryProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, diffusion=diffusion)
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    m, data = discretize_stationary_cg(analytical_problem=problem, grid=grid, boundary_info=bi)
    U = m.solve()
    try:
        visualize_patch(data['grid'], U=U, backend=backend)
    except QtMissing as ie:
        pytest.xfail("Qt missing")
    finally:
        stop_gui_processes()
Exemplo n.º 4
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = EllipticProblem(domain=domain,
                              rhs=rhs,
                              dirichlet_data=dirichlet,
                              diffusion_functions=(diffusion, ))
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    discretization, data = discretize_elliptic_cg(analytical_problem=problem,
                                                  grid=grid,
                                                  boundary_info=bi)
    U = discretization.solve()
    visualize_patch(data['grid'], U=U, backend=backend)
    sleep(2)  # so gui has a chance to popup
    for child in multiprocessing.active_children():
        child.terminate()
Exemplo n.º 5
0
def thermalblock_factory(xblocks, yblocks, diameter, seed):
    from pymor.analyticalproblems.thermalblock import ThermalBlockProblem
    from pymor.discretizers.elliptic import discretize_elliptic_cg
    from pymor.functions.basic import GenericFunction
    from pymor.operators.cg import InterpolationOperator
    p = ThermalBlockProblem((xblocks, yblocks))
    d, d_data = discretize_elliptic_cg(p, diameter)
    f = GenericFunction(lambda X, mu: X[..., 0]**mu['exp'] + X[..., 1],
                        dim_domain=2, parameter_type={'exp': ()})
    iop = InterpolationOperator(d_data['grid'], f)
    U = d.operator.source.empty()
    V = d.operator.range.empty()
    np.random.seed(seed)
    for exp in np.random.random(5):
        U.append(iop.as_vector(exp))
    for exp in np.random.random(6):
        V.append(iop.as_vector(exp))
    return d.operator, d.parameter_space.sample_randomly(1, seed=seed)[0], U, V, d.h1_product, d.l2_product
Exemplo n.º 6
0
def elliptic_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number')
    args['DIRICHLET-NUMBER'] = int(args['DIRICHLET-NUMBER'])
    assert 0 <= args['DIRICHLET-NUMBER'] <= 2, ValueError('Invalid Dirichlet boundary number.')
    args['NEUMANN-NUMBER'] = int(args['NEUMANN-NUMBER'])
    assert 0 <= args['NEUMANN-NUMBER'] <= 2, ValueError('Invalid Neumann boundary number.')
    args['NEUMANN-COUNT'] = int(args['NEUMANN-COUNT'])
    assert 0 <= args['NEUMANN-COUNT'] <= 3, ValueError('Invalid Neumann boundary count.')

    rhss = [GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, 2),
            GenericFunction(lambda X: (X[..., 0] - 0.5) ** 2 * 1000, 2)]
    dirichlets = [GenericFunction(lambda X: np.zeros(X.shape[:-1]), 2),
                  GenericFunction(lambda X: np.ones(X.shape[:-1]), 2),
                  GenericFunction(lambda X: X[..., 0], 2)]
    neumanns = [None,
                ConstantFunction(3., dim_domain=2),
                GenericFunction(lambda X:  50*(0.1 <= X[..., 1]) * (X[..., 1] <= 0.2)
                                          +50*(0.8 <= X[..., 1]) * (X[..., 1] <= 0.9), 2)]
    domains = [RectDomain(),
               RectDomain(right=BoundaryType('neumann')),
               RectDomain(right=BoundaryType('neumann'), top=BoundaryType('neumann')),
               RectDomain(right=BoundaryType('neumann'), top=BoundaryType('neumann'), bottom=BoundaryType('neumann'))]

    rhs = rhss[args['PROBLEM-NUMBER']]
    dirichlet = dirichlets[args['DIRICHLET-NUMBER']]
    neumann = neumanns[args['NEUMANN-NUMBER']]
    domain = domains[args['NEUMANN-COUNT']]

    for n in [32, 128]:
        grid_name = '{1}(({0},{0}))'.format(n, 'RectGrid' if args['--rect'] else 'TriaGrid')
        print('Solving on {0}'.format(grid_name))

        print('Setup problem ...')
        problem = EllipticProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, neumann_data=neumann)

        print('Discretize ...')
        if args['--rect']:
            grid, bi = discretize_domain_default(problem.domain, diameter=m.sqrt(2) / n, grid_type=RectGrid)
        else:
            grid, bi = discretize_domain_default(problem.domain, diameter=1. / n, grid_type=TriaGrid)
        discretizer = discretize_elliptic_fv if args['--fv'] else discretize_elliptic_cg
        discretization, _ = discretizer(analytical_problem=problem, grid=grid, boundary_info=bi)

        print('Solve ...')
        U = discretization.solve()

        print('Plot ...')
        discretization.visualize(U, title=grid_name)

        print('')
Exemplo n.º 7
0
from pymor.analyticalproblems.helmholtz import helmholtz_problem
from pymor.analyticalproblems.thermalblock import thermal_block_problem
from pymor.functions.basic import GenericFunction, ConstantFunction, LincombFunction
from pymor.parameters.functionals import ExpressionParameterFunctional


picklable_thermalblock_problems = \
    [thermal_block_problem(),
     thermal_block_problem(num_blocks=(3, 2)),
     thermal_block_problem(num_blocks=(1, 1)),
     thermal_block_problem(num_blocks=(2, 2), parameter_range=(1., 100.))]


non_picklable_thermalblock_problems = \
    [thermal_block_problem(num_blocks=(1, 3), parameter_range=(0.4, 0.5)).with_(
        rhs=GenericFunction(dim_domain=2, mapping=lambda X: X[..., 0] + X[..., 1]))]

thermalblock_problems = picklable_thermalblock_problems + non_picklable_thermalblock_problems


burgers_problems = \
    [burgers_problem(),
     burgers_problem(v=0.2, circle=False),
     burgers_problem(v=0.4, initial_data_type='bump'),
     burgers_problem(parameter_range=(1., 1.3)),
     burgers_problem_2d(),
     burgers_problem_2d(torus=False, initial_data_type='bump', parameter_range=(1.3, 1.5))]


picklable_elliptic_problems = \
    [StationaryProblem(domain=RectDomain(), rhs=ConstantFunction(dim_domain=2, value=1.)),
Exemplo n.º 8
0
class A:
    @staticmethod
    def unimportable_function(x):
        return np.max(x, axis=-1)


def get_function_with_closure(y):
    def function_with_closure(x):
        return np.concatenate((x + y, x - y), axis=-1)

    return function_with_closure


generic_functions = \
    [GenericFunction(lambda x: x, dim_domain=2, shape_range=(2,)),
     GenericFunction(lambda x, mu: mu['c']*x, dim_domain=1, shape_range=(1,), parameter_type={'c': ()}),
     GenericFunction(A.unimportable_function, dim_domain=7, shape_range=()),
     GenericFunction(get_function_with_closure(42), dim_domain=1, shape_range=(2,))]


picklable_generic_functions = \
    [GenericFunction(importable_function, dim_domain=3, shape_range=(1,))]

expression_functions = \
    [ExpressionFunction('x', dim_domain=2, shape_range=(2,)),
     ExpressionFunction("c*x", dim_domain=1, shape_range=(1,), parameter_type={'c': ()}),
     ExpressionFunction("c[2]*sin(x)", dim_domain=1, shape_range=(1,), parameter_type={'c': (3,)})]


@pytest.fixture(params=constant_functions + generic_functions +
Exemplo n.º 9
0
from pymor.analyticalproblems.elliptic import EllipticProblem
from pymor.analyticalproblems.thermalblock import ThermalBlockProblem
from pymor.functions.basic import GenericFunction, ConstantFunction
from pymor.parameters.functionals import ExpressionParameterFunctional


picklable_thermalblock_problems = \
    [ThermalBlockProblem(),
     ThermalBlockProblem(num_blocks=(3, 2)),
     ThermalBlockProblem(num_blocks=(1, 1)),
     ThermalBlockProblem(num_blocks=(2, 2), parameter_range=(1., 100.))]


non_picklable_thermalblock_problems = \
    [ThermalBlockProblem(num_blocks=(1, 3), parameter_range=(0.4, 0.5),
                         rhs=GenericFunction(dim_domain=2, mapping=lambda X: X[..., 0] + X[..., 1]))]


thermalblock_problems = picklable_thermalblock_problems + non_picklable_thermalblock_problems


burgers_problems = \
    [BurgersProblem(),
     BurgersProblem(v=0.2, circle=False),
     BurgersProblem(v=0.4, initial_data_type='bump'),
     BurgersProblem(parameter_range=(1., 1.3)),
     Burgers2DProblem(),
     Burgers2DProblem(torus=False, initial_data_type='bump', parameter_range=(1.3, 1.5))]


picklable_elliptic_problems = \