def watershedSegment(image, diskSize=20): gradmag = gradientMagnitudue(image) ## compute foreground markers # open image to create flat regions at cell centers se_disk = pymorph.sedisk(diskSize) image_opened = mahotas.open(image, se_disk); # define foreground markers as regional maxes of cells # this step is slow! foreground_markers = mahotas.regmax(image_opened) ## compute background markers # Threshold the image, cast it to the right datatype, and then calculate the distance image image_black_white = image_opened > mahotas.otsu(image_opened) image_black_white = image_black_white.astype('uint16') # note the inversion here- a key difference from the matlab algorithm # matlab distance is to nearest non-zero pixel # python distance is to nearest 0 pixel image_distance = pymorph.to_uint16(nd.distance_transform_edt(np.logical_not(image_black_white))) eight_conn = pymorph.sebox() distance_markers = mahotas.label(mahotas.regmin(image_distance, eight_conn))[0] image_dist_wshed, image_dist_wshed_lines =mahotas.cwatershed(image_distance, distance_markers, eight_conn, return_lines=True) background_markers = image_distance_watershed_lines - image_black_white all_markers = np.logical_or(foreground_markers, background_markers) # impose a min on the gradient image. assumes int64 gradmag2 = imimposemin(gradmag.astype(int), all_markers, eight_conn) # call watershed segmented_cells, segmented_cell_lines = mahotas.cwatershed(gradmag2, mahotas.label(all_markers)[0], eight_conn, return_lines=True) # seperate watershed regions segmented_cells[gradientMagnitudue(segmented_cells) > 0] = 0 return segmented_cells > 0, segmented_cells
def addCell(self, eventTuple): if self.maskOn: if self.data.ndim == 2: self.aveData = self.data.copy() else: self.aveData = self.data.mean(axis=2) x, y = eventTuple localValue = self.currentMask[x, y] print str(self.mode) + " " + "x: " + str(x) + ", y: " + str(y) + ", mask val: " + str(localValue) # ensure mask is uint16 self.currentMask = self.currentMask.astype("uint16") sys.stdout.flush() ########## NORMAL MODE if self.mode is None: if localValue > 0 and localValue != self.currentMaskNumber: print "we are altering mask at at %d, %d" % (x, y) # copy the old mask newMask = self.currentMask.copy() # make a labeled image of the current mask labeledCurrentMask = mahotas.label(newMask)[0] roiNumber = labeledCurrentMask[x, y] # set that ROI to zero newMask[labeledCurrentMask == roiNumber] = self.currentMaskNumber newMask = newMask.astype("uint16") self.listOfMasks.append(newMask) self.currentMask = self.listOfMasks[-1] elif localValue > 0 and self.data.ndim == 3: # update info panel labeledCurrentMask = mahotas.label(self.currentMask.copy())[0] roiNumber = labeledCurrentMask[x, y] self.updateInfoPanel(ROI_number=roiNumber) elif localValue == 0: xmin = int(x - self.diskSize) xmax = int(x + self.diskSize) ymin = int(y - self.diskSize) ymax = int(y + self.diskSize) sub_region_image = self.aveData[xmin:xmax, ymin:ymax].copy() # threshold = mahotas.otsu(self.data[xmin:xmax, ymin:ymax].astype('uint16')) # do a gaussian_laplacian filter to find the edges and the center g_l = nd.gaussian_laplace( sub_region_image, 1 ) # second argument is a free parameter, std of gaussian g_l = mahotas.dilate(mahotas.erode(g_l >= 0)) g_l = mahotas.label(g_l)[0] center = g_l == g_l[g_l.shape[0] / 2, g_l.shape[0] / 2] # edges = mahotas.dilate(mahotas.dilate(mahotas.dilate(center))) - center newCell = np.zeros_like(self.currentMask) newCell[xmin:xmax, ymin:ymax] = center newCell = mahotas.dilate(newCell) if self.useNMF: modes, thresh_modes, fit_data, this_cell, is_cell, nmf_limits = self.doLocalNMF(x, y, newCell) for mode, mode_thresh, t, i in zip(modes, thresh_modes, this_cell, is_cell): # need to place it in the right place # have x and y mode_width, mode_height = mode_thresh.shape mode_thresh_fullsize = np.zeros_like(newCell) mode_thresh_fullsize[ nmf_limits[0] : nmf_limits[1], nmf_limits[2] : nmf_limits[3] ] = mode_thresh # need to add all modes belonging to this cell first, # then remove the ones nearby. if i: if t: valid_area = np.logical_and( mahotas.dilate( mahotas.dilate(mahotas.dilate(mahotas.dilate(newCell.astype(bool)))) ), mode_thresh_fullsize, ) newCell = np.logical_or(newCell.astype(bool), valid_area) else: newCell = np.logical_and( newCell.astype(bool), np.logical_not(mahotas.dilate(mode_thresh_fullsize)) ) newCell = mahotas.close_holes(newCell.astype(bool)) self.excludePixels(newCell, 2) newCell = newCell.astype(self.currentMask.dtype) # remove all pixels in and near current mask and filter for ROI size newCell[mahotas.dilate(self.currentMask > 0)] = 0 newCell = self.excludePixels(newCell, 10) newMask = (newCell * self.currentMaskNumber) + self.currentMask newMask = newMask.astype("uint16") self.listOfMasks.append(newMask.copy()) self.currentMask = newMask.copy() elif self.mode is "OGB": # build structuring elements se = pymorph.sebox() se2 = pymorph.sedisk(self.cellRadius, metric="city-block") seJunk = pymorph.sedisk(max(np.floor(self.cellRadius / 4.0), 1), metric="city-block") seExpand = pymorph.sedisk(self.diskSize, metric="city-block") # add a disk around selected point, non-overlapping with adjacent cells dilatedOrignal = mahotas.dilate(self.currentMask.astype(bool), Bc=se) safeUnselected = np.logical_not(dilatedOrignal) # tempMask is tempMask = np.zeros_like(self.currentMask, dtype=bool) tempMask[x, y] = True tempMask = mahotas.dilate(tempMask, Bc=se2) tempMask = np.logical_and(tempMask, safeUnselected) # calculate the area we should add to this disk based on % of a threshold cellMean = self.aveData[tempMask == 1.0].mean() allMeanBw = self.aveData >= (cellMean * float(self.contrastThreshold)) tempLabel = mahotas.label(np.logical_and(allMeanBw, safeUnselected).astype(np.uint16))[0] connMeanBw = tempLabel == tempLabel[x, y] connMeanBw = np.logical_and(np.logical_or(connMeanBw, tempMask), safeUnselected).astype(np.bool) # erode and then dilate to remove sharp bits and edges erodedMean = mahotas.erode(connMeanBw, Bc=seJunk) dilateMean = mahotas.dilate(erodedMean, Bc=seJunk) dilateMean = mahotas.dilate(dilateMean, Bc=seExpand) modes, thresh_modes, fit_data, this_cell, is_cell, limits = self.doLocaNMF(x, y) newCell = np.logical_and(dilateMean, safeUnselected) newMask = (newCell * self.currentMaskNumber) + self.currentMask newMask = newMask.astype("uint16") self.listOfMasks.append(newMask.copy()) self.currentMask = newMask.copy() ########## SQUARE MODE elif self.mode is "square": self.modeData.append((x, y)) if len(self.modeData) == 2: square_mask = np.zeros_like(self.currentMask) xstart = self.modeData[0][0] ystart = self.modeData[0][1] xend = self.modeData[1][0] yend = self.modeData[1][1] square_mask[xstart:xend, ystart:yend] = 1 # check if square_mask interfers with current mask, if so, abort if np.any(np.logical_and(square_mask, self.currentMask)): return None # add square_mask to mask newMask = (square_mask * self.currentMaskNumber) + self.currentMask newMask = newMask.astype("uint16") self.listOfMasks.append(newMask) self.currentMask = self.listOfMasks[-1] # clear current mode data self.clearModeData() ########## CIRCLE MODE elif self.mode is "circle": # make a strel and move it in place to make circle_mask if self.diskSize < 1: return None if self.diskSize is 1: se = np.ones((1, 1)) elif self.diskSize is 2: se = pymorph.secross(r=1) else: se = pymorph.sedisk(r=(self.diskSize - 1)) se_extent = int(se.shape[0] / 2) circle_mask = np.zeros_like(self.currentMask) circle_mask[x - se_extent : x + se_extent + 1, y - se_extent : y + se_extent + 1] = se * 1.0 circle_mask = circle_mask.astype(bool) # check if circle_mask interfers with current mask, if so, abort if np.any(np.logical_and(circle_mask, mahotas.dilate(self.currentMask.astype(bool)))): return None # add circle_mask to mask newMask = (circle_mask * self.currentMaskNumber) + self.currentMask newMask = newMask.astype("uint16") self.listOfMasks.append(newMask) self.currentMask = self.listOfMasks[-1] ########## POLY MODE elif self.mode is "poly": self.modeData.append((x, y)) sys.stdout.flush() self.makeNewMaskAndBackgroundImage()
def tentDetection_wt_mm(strInputFile, maxTentArea, strOutputFile, strShape='box', iThresh_coeff=0): import pywt import pymorph as pymm objImg = osgeo.gdal.Open(strInputFile, GA_ReadOnly) nRasterCount = objImg.RasterCount poDataset = objImg.ReadAsArray().astype(np.float) geotransform = objImg.GetGeoTransform() pixelWidth = np.fabs(geotransform[1]) pixelHeight = np.fabs(geotransform[5]) resolution = pixelWidth * pixelHeight # NoDataValue = objImg.GetRasterBand(1).GetNoDataValue() # gray scale image if (nRasterCount == 1): objnImg = pymm.to_int32(poDataset) # RGB image elif(nRasterCount == 3): objnImg = pymm.to_gray(poDataset) else: print 'it only supports gray-scale or RGB image' sys.exit(1) # determine the structure element iNum = int(np.sqrt(maxTentArea) / resolution) + 1 if (strShape == 'box'): objStructureElement = pymm.sebox(iNum) elif (strShape == 'cross'): objStructureElement = pymm.secross(iNum) else: objStructureElement = pymm.sedisk(iNum) # decomposition until 1 level wp = pywt.WaveletPacket2D(data=objnImg, wavelet='db4', mode='sym', maxlevel=1) # iMaxLevel = wp.maxlevel() # top-hat wp['h'].data = pymm.openrecth(pymm.to_int32(wp['h'].data), objStructureElement, objStructureElement) wp['v'].data = pymm.openrecth(pymm.to_int32(wp['v'].data), objStructureElement, objStructureElement) wp['d'].data = pymm.openrecth(pymm.to_int32(wp['d'].data), objStructureElement, objStructureElement) wp['a'].data = 0.5 * wp['a'].data # reconstruction wp.reconstruct(update=True) # top-hat for reconstructed image objtophat = pymm.openrecth(pymm.to_int32(wp.data), objStructureElement, objStructureElement) # y = mean + k*std (minValue, maxValue, meanValue, stdValue) = objImg.GetRasterBand(1).GetStatistics(0, 1) if (nRasterCount == 3): (minValue2, maxValue2, meanValue2, stdValue2) = objImg.GetRasterBand(2).GetStatistics(0, 1) (minValue3, maxValue3, meanValue3, stdValue3) = objImg.GetRasterBand(3).GetStatistics(0, 1) meanValue = 0.2989 * meanValue + 0.5870 * meanValue2 + 0.1140 * meanValue3 maxValue = 0.2989 * maxValue + 0.5870 * maxValue2 + 0.1140 * maxValue3 # meanValue = 438 # maxValue = 2047 threshad = meanValue + iThresh_coeff * stdValue objTent = pymm.threshad(objtophat, stdValue, maxValue) data_list = [] data_list.append(objTent) WriteOutputImage(strOutputFile, 1, data_list, 0, 0, 0, strInputFile)
def tentDetection_MM(strInputFile, maxTentArea, strOutputFile, strShape='box', iThresh_coeff=0): # five step to do this # 1. opening-determine the square structure element (6-60 m2/resolution) # 2. opening by reconstruction # 3. top-hat by reconstruction # 4. lower threshold # 5. double threshold import pymorph as pymm objImg = osgeo.gdal.Open(strInputFile, GA_ReadOnly) nRasterCount = objImg.RasterCount poDataset = objImg.ReadAsArray().astype(np.float) geotransform = objImg.GetGeoTransform() pixelWidth = np.fabs(geotransform[1]) pixelHeight = np.fabs(geotransform[5]) resolution = pixelWidth * pixelHeight # NoDataValue = objImg.GetRasterBand(1).GetNoDataValue() # gray scale image if (nRasterCount == 1): objnImg = pymm.to_int32(poDataset) # RGB image elif(nRasterCount == 3): objnImg = pymm.to_gray(poDataset) else: print 'it only supports gray-scale or RGB image' sys.exit(1) # determine the structure element iNum = int(np.sqrt(maxTentArea) / resolution) + 1 if (strShape == 'box'): objStructureElement = pymm.sebox(iNum) elif (strShape == 'cross'): objStructureElement = pymm.secross(iNum) else: objStructureElement = pymm.sedisk(iNum) # opening objOpen = pymm.open(objnImg, objStructureElement) # opening by reconstruction objOpenRec = pymm.openrec(objOpen, objStructureElement, objStructureElement) objtophat = pymm.openrecth(objnImg, objStructureElement, objStructureElement) # objtophat = pymm.subm(objnImg, objOpenRec) # objTent = pymm.threshad(objtophat, 0.25 * objnImg, 0.40 * objnImg) # y = mean + k*std (minValue, maxValue, meanValue, stdValue) = objImg.GetRasterBand(1).GetStatistics(0, 1) if (nRasterCount == 3): (minValue2, maxValue2, meanValue2, stdValue2) = objImg.GetRasterBand(2).GetStatistics(0, 1) (minValue3, maxValue3, meanValue3, stdValue3) = objImg.GetRasterBand(3).GetStatistics(0, 1) meanValue = 0.2989 * meanValue + 0.5870 * meanValue2 + 0.1140 * meanValue3 maxValue = 0.2989 * maxValue + 0.5870 * maxValue2 + 0.1140 * maxValue3 # meanValue = 438 # maxValue = 2047 threshad = meanValue + iThresh_coeff * stdValue objTent = pymm.threshad(objtophat, threshad, maxValue) data_list = [] data_list.append(objTent) WriteOutputImage(strOutputFile, 1, data_list, 0, 0, 0, strInputFile) '''
def watershedSegment(image, diskSize=20): """This routine implements the watershed example from http://www.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html, but using pymorph and mahotas. :param image: an image (2d numpy array) to be segemented :param diskSize: an integer used as a size for a structuring element used for morphological preprocessing. :returns: tuple of binarized and labeled segmention masks """ def gradientMagnitudue(image): sobel_x = nd.sobel(image.astype('double'), 0) sobel_y = nd.sobel(image.astype('double'), 1) return np.sqrt((sobel_x * sobel_x) + (sobel_y * sobel_y)) def imimposemin(image, mask, connectivity): fm = image.copy() fm[mask] = -9223372036854775800 fm[np.logical_not(mask)] = 9223372036854775800 fp1 = image + 1 g = np.minimum(fp1, fm) j = infrec(fm, g) return j def infrec(f, g, Bc=None): if Bc is None: Bc = pymorph.secross() n = f.size return fast_conditional_dilate(f, g, Bc, n) def fast_conditional_dilate(f, g, Bc=None, n=1): if Bc is None: Bc = pymorph.secross() f = pymorph.intersec(f, g) for i in xrange(n): prev = f f = pymorph.intersec(mahotas.dilate(f, Bc), g) if pymorph.isequal(f, prev): break return f gradmag = gradientMagnitudue(image) ## compute foreground markers # open image to create flat regions at cell centers se_disk = pymorph.sedisk(diskSize) image_opened = mahotas.open(image, se_disk) # define foreground markers as regional maxes of cells # this step is slow! foreground_markers = mahotas.regmax(image_opened) ## compute background markers # Threshold the image, cast it to the right datatype, and then calculate the distance image image_black_white = image_opened > mahotas.otsu(image_opened) image_black_white = image_black_white.astype('uint16') # note the inversion here- a key difference from the matlab algorithm # matlab distance is to nearest non-zero pixel # python distance is to nearest 0 pixel image_distance = pymorph.to_uint16( nd.distance_transform_edt(np.logical_not(image_black_white))) eight_conn = pymorph.sebox() distance_markers = mahotas.label(mahotas.regmin(image_distance, eight_conn))[0] image_dist_wshed, image_dist_wshed_lines = mahotas.cwatershed( image_distance, distance_markers, eight_conn, return_lines=True) background_markers = image_dist_wshed_lines - image_black_white all_markers = np.logical_or(foreground_markers, background_markers) # impose a min on the gradient image. assumes int64 gradmag2 = imimposemin(gradmag.astype(int), all_markers, eight_conn) # call watershed segmented_cells, segmented_cell_lines = mahotas.cwatershed( gradmag2, mahotas.label(all_markers)[0], eight_conn, return_lines=True) segmented_cells -= 1 # seperate watershed regions segmented_cells[gradientMagnitudue(segmented_cells) > 0] = 0 return segmented_cells > 0, segmented_cells
def test_sebox(): assert np.all(pymorph.sebox(0) == np.array([1])) assert np.all(pymorph.sebox(1) == np.ones((3,3))) assert np.all(pymorph.sebox(9) == np.ones((2*9+1,2*9+1)))
def watershedSegment(image, diskSize=20): def gradientMagnitudue(image): sobel_x = nd.sobel(image.astype('double'), 0) sobel_y = nd.sobel(image.astype('double'), 1) return np.sqrt((sobel_x * sobel_x) + (sobel_y * sobel_y)) def imimposemin(image, mask, connectivity): fm = image.copy() fm[mask] = -9223372036854775800 fm[np.logical_not(mask)] = 9223372036854775800 fp1 = image + 1 g = np.minimum(fp1, fm) j = infrec(fm, g) return j def infrec(f, g, Bc=None): if Bc is None: Bc = pymorph.secross() n = f.size return fast_conditional_dilate(f, g, Bc, n); def fast_conditional_dilate(f, g, Bc=None, n=1): if Bc is None: Bc = pymorph.secross() f = pymorph.intersec(f,g) for i in xrange(n): prev = f f = pymorph.intersec(mahotas.dilate(f, Bc), g) if pymorph.isequal(f, prev): break return f gradmag = gradientMagnitudue(image) ## compute foreground markers # open image to create flat regions at cell centers se_disk = pymorph.sedisk(diskSize) image_opened = mahotas.open(image, se_disk); # define foreground markers as regional maxes of cells # this step is slow! foreground_markers = mahotas.regmax(image_opened) ## compute background markers # Threshold the image, cast it to the right datatype, and then calculate the distance image image_black_white = image_opened > mahotas.otsu(image_opened) image_black_white = image_black_white.astype('uint16') # note the inversion here- a key difference from the matlab algorithm # matlab distance is to nearest non-zero pixel # python distance is to nearest 0 pixel image_distance = pymorph.to_uint16(nd.distance_transform_edt(np.logical_not(image_black_white))) eight_conn = pymorph.sebox() distance_markers = mahotas.label(mahotas.regmin(image_distance, eight_conn))[0] image_dist_wshed, image_dist_wshed_lines = mahotas.cwatershed(image_distance, distance_markers, eight_conn, return_lines=True) background_markers = image_dist_wshed_lines - image_black_white all_markers = np.logical_or(foreground_markers, background_markers) # impose a min on the gradient image. assumes int64 gradmag2 = imimposemin(gradmag.astype(int), all_markers, eight_conn) # call watershed segmented_cells, segmented_cell_lines = mahotas.cwatershed(gradmag2, mahotas.label(all_markers)[0], eight_conn, return_lines=True) segmented_cells -= 1 # seperate watershed regions segmented_cells[gradientMagnitudue(segmented_cells) > 0] = 0 return segmented_cells > 0, segmented_cells
def tentDetection_wt_mm(strInputFile, maxTentArea, strOutputFile, strShape='box', iThresh_coeff=0): import pywt import pymorph as pymm objImg = osgeo.gdal.Open(strInputFile, GA_ReadOnly) nRasterCount = objImg.RasterCount poDataset = objImg.ReadAsArray().astype(np.float) geotransform = objImg.GetGeoTransform() pixelWidth = np.fabs(geotransform[1]) pixelHeight = np.fabs(geotransform[5]) resolution = pixelWidth * pixelHeight # NoDataValue = objImg.GetRasterBand(1).GetNoDataValue() # gray scale image if (nRasterCount == 1): objnImg = pymm.to_int32(poDataset) # RGB image elif (nRasterCount == 3): objnImg = pymm.to_gray(poDataset) else: print 'it only supports gray-scale or RGB image' sys.exit(1) # determine the structure element iNum = int(np.sqrt(maxTentArea) / resolution) + 1 if (strShape == 'box'): objStructureElement = pymm.sebox(iNum) elif (strShape == 'cross'): objStructureElement = pymm.secross(iNum) else: objStructureElement = pymm.sedisk(iNum) # decomposition until 1 level wp = pywt.WaveletPacket2D(data=objnImg, wavelet='db4', mode='sym', maxlevel=1) # iMaxLevel = wp.maxlevel() # top-hat wp['h'].data = pymm.openrecth(pymm.to_int32(wp['h'].data), objStructureElement, objStructureElement) wp['v'].data = pymm.openrecth(pymm.to_int32(wp['v'].data), objStructureElement, objStructureElement) wp['d'].data = pymm.openrecth(pymm.to_int32(wp['d'].data), objStructureElement, objStructureElement) wp['a'].data = 0.5 * wp['a'].data # reconstruction wp.reconstruct(update=True) # top-hat for reconstructed image objtophat = pymm.openrecth(pymm.to_int32(wp.data), objStructureElement, objStructureElement) # y = mean + k*std (minValue, maxValue, meanValue, stdValue) = objImg.GetRasterBand(1).GetStatistics(0, 1) if (nRasterCount == 3): (minValue2, maxValue2, meanValue2, stdValue2) = objImg.GetRasterBand(2).GetStatistics(0, 1) (minValue3, maxValue3, meanValue3, stdValue3) = objImg.GetRasterBand(3).GetStatistics(0, 1) meanValue = 0.2989 * meanValue + 0.5870 * meanValue2 + 0.1140 * meanValue3 maxValue = 0.2989 * maxValue + 0.5870 * maxValue2 + 0.1140 * maxValue3 # meanValue = 438 # maxValue = 2047 threshad = meanValue + iThresh_coeff * stdValue objTent = pymm.threshad(objtophat, stdValue, maxValue) data_list = [] data_list.append(objTent) WriteOutputImage(strOutputFile, 1, data_list, 0, 0, 0, strInputFile)
def tentDetection_MM(strInputFile, maxTentArea, strOutputFile, strShape='box', iThresh_coeff=0): # five step to do this # 1. opening-determine the square structure element (6-60 m2/resolution) # 2. opening by reconstruction # 3. top-hat by reconstruction # 4. lower threshold # 5. double threshold import pymorph as pymm objImg = osgeo.gdal.Open(strInputFile, GA_ReadOnly) nRasterCount = objImg.RasterCount poDataset = objImg.ReadAsArray().astype(np.float) geotransform = objImg.GetGeoTransform() pixelWidth = np.fabs(geotransform[1]) pixelHeight = np.fabs(geotransform[5]) resolution = pixelWidth * pixelHeight # NoDataValue = objImg.GetRasterBand(1).GetNoDataValue() # gray scale image if (nRasterCount == 1): objnImg = pymm.to_int32(poDataset) # RGB image elif (nRasterCount == 3): objnImg = pymm.to_gray(poDataset) else: print 'it only supports gray-scale or RGB image' sys.exit(1) # determine the structure element iNum = int(np.sqrt(maxTentArea) / resolution) + 1 if (strShape == 'box'): objStructureElement = pymm.sebox(iNum) elif (strShape == 'cross'): objStructureElement = pymm.secross(iNum) else: objStructureElement = pymm.sedisk(iNum) # opening objOpen = pymm.open(objnImg, objStructureElement) # opening by reconstruction objOpenRec = pymm.openrec(objOpen, objStructureElement, objStructureElement) objtophat = pymm.openrecth(objnImg, objStructureElement, objStructureElement) # objtophat = pymm.subm(objnImg, objOpenRec) # objTent = pymm.threshad(objtophat, 0.25 * objnImg, 0.40 * objnImg) # y = mean + k*std (minValue, maxValue, meanValue, stdValue) = objImg.GetRasterBand(1).GetStatistics(0, 1) if (nRasterCount == 3): (minValue2, maxValue2, meanValue2, stdValue2) = objImg.GetRasterBand(2).GetStatistics(0, 1) (minValue3, maxValue3, meanValue3, stdValue3) = objImg.GetRasterBand(3).GetStatistics(0, 1) meanValue = 0.2989 * meanValue + 0.5870 * meanValue2 + 0.1140 * meanValue3 maxValue = 0.2989 * maxValue + 0.5870 * maxValue2 + 0.1140 * maxValue3 # meanValue = 438 # maxValue = 2047 threshad = meanValue + iThresh_coeff * stdValue objTent = pymm.threshad(objtophat, threshad, maxValue) data_list = [] data_list.append(objTent) WriteOutputImage(strOutputFile, 1, data_list, 0, 0, 0, strInputFile) '''
def alternative_solution(self, a, orientation='coronal', linethickness=10, outimg=False): ''' Paramenters ----------- a: original image in graylevel ''' H, W = a.shape if orientation == 'coronal': # UL = mm.limits(a)[1] # upper limit UL = 255 b = 1 - iacircle(a.shape, H / 3, (1.4 * H / 3, W / 2)) # Circle b = b[0:70, W / 2 - 80:W / 2 + 80] # Rectangle # if outimg: # b_ = 0 * a; b_[0:70, W / 2 - 80:W / 2 + 80] = UL * b # b_ only for presentation # b_[:, W / 2 - linethickness / 2:W / 2 + linethickness / 2] = UL # b_ only for presentation c = a + 0 c[:, W / 2 - linethickness / 2:W / 2 + linethickness / 2] = UL c[0:70, W / 2 - 80:W / 2 + 80] = (1 - b) * c[0:70, W / 2 - 80:W / 2 + 80] + b * UL c[0:40, W / 2 - 70:W / 2 + 70] = UL d = mm.open(c, mm.img2se(mm.binary(np.ones((20, 10))))) e = mm.close(d, mm.seline(5)) f = mm.close_holes(e) g = mm.subm(f, d) h = mm.close_holes(g) i = mm.areaopen(h, 1000) j1, j2 = iaotsu(i) # j = i > j1 ret, j = cv2.threshold(cv2.GaussianBlur(i, (7, 7), 0), j1, 255, cv2.THRESH_BINARY) k = mm.open(j, mm.seline(20, 90)) l = mm.areaopen(k, 1000) # m = mm.label(l) res = np.vstack( [np.hstack([c, d, e, f, g]), np.hstack([h, i, j, k, l])]) cv2.imshow('Result', res) cv2.waitKey(0) cv2.destroyAllWindows() ################################ # l_ = mm.blob(k,'AREA','IMAGE') # l = l_ == max(ravel(l_)) # m = mm.open(l, mm.sedisk(3)) # VERIFICAR O MELHOR ELEMENTO ESTRUTURANTE AQUI # n = mm.label(m) if outimg: if not os.path.isdir('outimg'): os.mkdir('outimg') def N(x): # y = uint8(ianormalize(x, (0, 255)) + 0.5) y = (ianormalize(x, (0, 255)) + 0.5).astype(np.uint8) return y adwrite('outimg/a.png', N(a)) adwrite('outimg/b.png', N(b_)) adwrite('outimg/c.png', N(c)) adwrite('outimg/d.png', N(d)) adwrite('outimg/e.png', N(e)) adwrite('outimg/f.png', N(f)) adwrite('outimg/g.png', N(g)) adwrite('outimg/h.png', N(h)) adwrite('outimg/i.png', N(i)) adwrite('outimg/j.png', N(j)) adwrite('outimg/k.png', N(k)) adwrite('outimg/l.png', N(l)) adwrite('outimg/m.png', N(m)) # adwrite('outimg/n.png', N(n)) return m else: b = mm.areaopen(a, 500) c = mm.close(b, mm.sebox(3)) d = mm.close_holes(c) e = mm.subm(d, c) f = mm.areaopen(e, 1000) # g = f > 5 ret, g = cv2.threshold(cv2.GaussianBlur(f, (5, 5), 0), 3, 255, cv2.THRESH_BINARY) # ret, g = cv2.threshold( # cv2.GaussianBlur(f, (7, 7), 0), # 5, 255, # cv2.THRESH_BINARY_INV) h = mm.asf(g, 'CO', mm.sedisk(5)) i = mm.close_holes(h) res = np.vstack( [np.hstack([a, b, c, d, e]), np.hstack([f, g, h, i, a])]) cv2.imshow('Result', res) cv2.waitKey(0) cv2.destroyAllWindows() if outimg: if not os.path.isdir('outimg'): os.mkdir('outimg') def N(x): y = (ianormalize(x, (0, 255)) + 0.5).astype(np.uint8) return y adwrite('outimg/a.png', N(a)) adwrite('outimg/b.png', N(b)) adwrite('outimg/c.png', N(c)) adwrite('outimg/d.png', N(d)) adwrite('outimg/e.png', N(e)) adwrite('outimg/f.png', N(f)) adwrite('outimg/g.png', N(g)) adwrite('outimg/h.png', N(h)) adwrite('outimg/i.png', N(i)) return i