def method_1(self): #creates a distance matrix that essentially is a list containing lists with the property where matrix[i][j] is the distance between point i and point j t0 = dt.time()#starts to time the method until its completion matrix = [] meth1sol = [] for i in li: r = [] for j in li: r.append(i.distance(j)) matrix.append(r) n = len(matrix) V = range(n) E = [(i,j) for i in V for j in V if i!=j] #the algorithm that eliminates invalid subtours pm.begin('subtour elimination') x = pm.var('x', E, bool) #minimizes the sum of the distances found in the matrix pm.minimize(sum(matrix[i][j]*x[i,j] for i,j in E), 'dist') for k in V: sum( x[k,j] for j in V if j!=k ) == 1 sum( x[i,k] for i in V if i!=k ) == 1 #calls the solver method and deactivates the result message pm.solver(float, msg_lev = pm.glpk.GLP_MSG_OFF) pm.solver(int, msg_lev= pm.glpk.GLP_MSG_OFF) pm.solve() global subtourg #the function that creates subtours def subtourl(x): succ = 0 subt = [succ] #start from node 0 while True: succ=sum(x[succ,j].primal*j for j in V if j!=succ) if succ == 0: break #tour found subt.append(int(succ+0.5)) return subt subtourg = subtourl while True: #a loop that creates subtours and keeps them if they are valid, terminating the programme in the process, or discards them if they are not subt = subtourg(x) if len(subt) == n: #print("Optimal tour length: %g"%pm.vobj()) #print("Optimal tour:"); print(subt) break print("New subtour: %r"% subt) if len(subt) == 1: break #something wrong #now add a subtour elimination constraint: nots = [j for j in V if j not in subt] sum(x[i,j] for i in subt for j in nots) >= 1 pm.solve() #solve the IP problem again pm.end() #print(subt) #now the solution is added to a list that can be interpreted by the connect method for i in subt: meth1sol.append(li[i]) print(len(meth1sol)) self.connect(meth1sol, method1_colour, 1) t1 = dt.time() t = t1 - t0 t = round(t, 2)#the required time is calculated and rounded for conviniency self.t1.set("time:\n{}s".format(t))
def ppSolver(expectedReturn, numberClients, numberChannels, numberProducts, cost, budget, channelCap, minOfferProduct, maxOfferProduct, rurdleRate): startTime = timeit.default_timer() rNumberClients = range(numberClients) rNumberChannels = range(numberChannels) rNumberProducts = range(numberProducts) t = pp.iprod(rNumberClients, rNumberChannels, rNumberProducts) pp.begin('basic') # begin modelling pp.verbose(False) # be verbose x = pp.var('choice', t, bool) pp.maximize(sum(x[i,j,k]*expectedReturn[i][j][k] for i in rNumberClients\ for j in rNumberChannels for k in rNumberProducts)) #channelLimitConstraint: for j in rNumberChannels: sum(x[i,j,k] for i in rNumberClients for k in rNumberProducts)\ <=channelCap[j] #maxOfferProductConstraint: for k in rNumberProducts: sum(x[i,j,k] for i in rNumberClients for j in rNumberChannels)\ <=maxOfferProduct[k] #minOfferProductConstraint: # for k in rNumberProducts: # sum(x[i,j,k] for i in rNumberClients for j in rNumberChannels)\ # >=minOfferProduct[k] #budgetConstraint: pp.st(sum(x[i,j,k]*cost[j] for i in rNumberClients for j in\ rNumberChannels for k in rNumberProducts)<=budget,"Budget Constr.") #clientLimitConstraint: for i in rNumberClients: pp.st(sum(x[i,j,k] for j in rNumberChannels for k in rNumberProducts)\ <=1,"Client "+str(i)+" limit") #rurdleRateConstraint: pp.st(sum(x[i,j,k]*expectedReturn[i][j][k] for i in rNumberClients for j \ in rNumberChannels for k in rNumberProducts)>= (1+rurdleRate)\ *sum(x[i,j,k]*cost[j] for i in rNumberClients for j in\ rNumberChannels for k in rNumberProducts),"Rurdle Rate Constr") pp.solve() # solve the model # pp.sensitivity() # sensitivity report endTime = timeit.default_timer() - startTime print("Objetivo encontrado: ", round(pp.vobj(), 2), " em ", round(endTime, 3), " segundos") print("\n\n\n") appendCsv(numberClients, "Solver method", endTime, True, round(pp.vobj(), 2)) pp.end() #Good habit: do away with the model
def summerize(tweets_df): print(len(tweets_df)) #print(tweets_df['tweet_texts'][1]) tf_idf.compute_tf_idf(tweets_df) term_matrix = np.load('term_matrix.npy') vocab_to_idx = np.load('vocab_to_idx.npy', allow_pickle=True).item() content_vocab = list(np.load('content_vocab.npy')) # tfidf_dict = np.load('tfidf_dict.npy', allow_pickle=True).item() print("1 ##################") spacy_tweets = [] for doc in nlp.pipe(tweets_df['tweet_texts'].astype('unicode'), n_threads=-1): spacy_tweets.append(doc) spacy_tweets = [tweet for tweet in spacy_tweets if len(tweet) > 1] # spacy_tweets = np.random.choice(spacy_tweets, 10, replace=False) # spacy_tweets = spacy_tweets[:20] print(len(spacy_tweets)) print(spacy_tweets[0]) print("2 ##################") all_bigrams = [ list(bigrams([token.lemma_ for token in tweets])) for tweets in spacy_tweets ] starting_nodes = [single_bigram[0] for single_bigram in all_bigrams] end_nodes = [single_bigram[-1] for single_bigram in all_bigrams] all_bigrams = [ node for single_bigram in all_bigrams for node in single_bigram ] all_bigrams = list(set(all_bigrams)) print("all_bigrams len=", len(all_bigrams)) print(all_bigrams[0]) print("3 ##################") # bigram_graph = make_bigram_graph(all_bigrams, starting_nodes[1]) # print(len(bigram_graph)) # print(bigram_graph) # path = breadth_first_search(bigram_graph, starting_nodes[1], end_nodes[2]) # print(path) bigram_paths = [] for single_start_node in tqdm(starting_nodes): bigram_graph = make_bigram_graph(all_bigrams, single_start_node) for single_end_node in end_nodes: possible_paths = breadth_first_search(bigram_graph, single_start_node, single_end_node) for path in possible_paths: bigram_paths.append(path) print("bigram_paths len=", len(bigram_paths)) # print(bigram_paths[10]) # for tweet in spacy_tweets: # bigram_paths.append(list(bigrams([token.lemma_ for token in tweets]))) word_paths = [] for path in tqdm(bigram_paths): word_paths.append(make_list(path)) print(word_paths[0]) print("4 ##################") mp.begin('COWABS') # Defining my first variable, x # This defines whether or not a word path is selected x = mp.var(str('x'), len(word_paths), bool) # Also defining the second variable, which defines # whether or not a content word is chosen y = mp.var(str('y'), len(content_vocab), bool) mp.maximize( sum([ linguistic_quality(word_paths[i]) * informativeness(word_paths[i], term_matrix, vocab_to_idx) * x[i] for i in range(len(x)) ]) + sum(y)) # hiding the output of this line since its a very long sum # sum([x[i] * len(word_paths[i]) for i in range(len(x))]) <= 150 for j in range(len(y)): sum([ x[i] for i in paths_with_content_words(j, word_paths, content_vocab) ]) >= y[j] for i in range(len(x)): sum(y[j] for j in content_words(i, word_paths, content_vocab)) >= len( content_words(i, word_paths, content_vocab)) * x[i] mp.solve() result_x = [value.primal for value in x] result_y = [value.primal for value in y] mp.end() chosen_paths = np.nonzero(result_x) chosen_words = np.nonzero(result_y) print("*** Total = ", len(chosen_paths[0])) min_cosine_sim = 999 final_sentence = None for i in chosen_paths[0]: print('--------------') print(str(" ").join([token for token in word_paths[i]])) cosine_sim = informativeness(word_paths[i], term_matrix, vocab_to_idx) print(cosine_sim) if min_cosine_sim > cosine_sim: min_cosine_sim = cosine_sim final_sentence = str(" ").join([token for token in word_paths[i]]) # print("####### Summary ###########") # print(final_sentence) return final_sentence