Exemplo n.º 1
0
def sparse_select_side(hyperplane, offset, point_inds, point_data, rng_state):
    margin = offset

    hyperplane_size = hyperplane.shape[1]
    while hyperplane[0, hyperplane_size - 1] < 0.0:
        hyperplane_size -= 1

    hyperplane_inds = hyperplane[0, :hyperplane_size].astype(np.int32)
    hyperplane_data = hyperplane[1, :hyperplane_size]

    _, aux_data = sparse_mul(hyperplane_inds, hyperplane_data, point_inds,
                             point_data)

    for val in aux_data:
        margin += val

    if abs(margin) < EPS:
        side = tau_rand_int(rng_state) % 2
        if side == 0:
            return 0
        else:
            return 1
    elif margin > 0:
        return 0
    else:
        return 1
Exemplo n.º 2
0
def sparse_select_side(hyperplane, offset, point_inds, point_data, rng_state):
    margin = offset

    hyperplane_inds = arr_unique(hyperplane[0])
    hyperplane_data = hyperplane[1, : hyperplane_inds.shape[0]]

    _, aux_data = sparse_mul(hyperplane_inds, hyperplane_data, point_inds, point_data)

    for d in range(aux_data.shape[0]):
        margin += aux_data[d]

    if abs(margin) < EPS:
        side = tau_rand_int(rng_state) % 2
        if side == 0:
            return 0
        else:
            return 1
    elif margin > 0:
        return 0
    else:
        return 1
Exemplo n.º 3
0
def sparse_euclidean_random_projection_split(inds, indptr, data, indices,
                                             rng_state):
    """Given a set of ``graph_indices`` for graph_data points from a sparse graph_data set
    presented in csr sparse format as inds, graph_indptr and graph_data, create
    a random hyperplane to split the graph_data, returning two arrays graph_indices
    that fall on either side of the hyperplane. This is the basis for a
    random projection tree, which simply uses this splitting recursively.
    This particular split uses cosine distance to determine the hyperplane
    and which side each graph_data sample falls on.
    Parameters
    ----------
    inds: array
        CSR format index array of the matrix
    indptr: array
        CSR format index pointer array of the matrix
    data: array
        CSR format graph_data array of the matrix
    indices: array of shape (tree_node_size,)
        The graph_indices of the elements in the ``graph_data`` array that are to
        be split in the current operation.
    rng_state: array of int64, shape (3,)
        The internal state of the rng
    Returns
    -------
    indices_left: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    indices_right: array
        The elements of ``graph_indices`` that fall on the "left" side of the
        random hyperplane.
    """
    # Select two random points, set the hyperplane between them
    left_index = np.abs(tau_rand_int(rng_state)) % indices.shape[0]
    right_index = np.abs(tau_rand_int(rng_state)) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_inds = inds[indptr[left]:indptr[left + 1]]
    left_data = data[indptr[left]:indptr[left + 1]]
    right_inds = inds[indptr[right]:indptr[right + 1]]
    right_data = data[indptr[right]:indptr[right + 1]]

    # Compute the normal vector to the hyperplane (the vector between
    # the two points) and the offset from the origin
    hyperplane_offset = 0.0
    hyperplane_inds, hyperplane_data = sparse_diff(left_inds, left_data,
                                                   right_inds, right_data)
    offset_inds, offset_data = sparse_sum(left_inds, left_data, right_inds,
                                          right_data)
    offset_data = offset_data / 2.0
    offset_inds, offset_data = sparse_mul(hyperplane_inds, hyperplane_data,
                                          offset_inds,
                                          offset_data.astype(np.float32))

    for val in offset_data:
        hyperplane_offset -= val

    # For each point compute the margin (project into normal vector, add offset)
    # If we are on lower side of the hyperplane put in one pile, otherwise
    # put it in the other pile (if we hit hyperplane on the nose, flip a coin)
    n_left = 0
    n_right = 0
    side = np.empty(indices.shape[0], np.int8)
    for i in range(indices.shape[0]):
        margin = hyperplane_offset
        i_inds = inds[indptr[indices[i]]:indptr[indices[i] + 1]]
        i_data = data[indptr[indices[i]]:indptr[indices[i] + 1]]

        _, mul_data = sparse_mul(hyperplane_inds, hyperplane_data, i_inds,
                                 i_data)
        for val in mul_data:
            margin += val

        if abs(margin) < EPS:
            side[i] = abs(tau_rand_int(rng_state)) % 2
            if side[i] == 0:
                n_left += 1
            else:
                n_right += 1
        elif margin > 0:
            side[i] = 0
            n_left += 1
        else:
            side[i] = 1
            n_right += 1

    # Now that we have the counts allocate arrays
    indices_left = np.empty(n_left, dtype=np.int32)
    indices_right = np.empty(n_right, dtype=np.int32)

    # Populate the arrays with graph_indices according to which side they fell on
    n_left = 0
    n_right = 0
    for i in range(side.shape[0]):
        if side[i] == 0:
            indices_left[n_left] = indices[i]
            n_left += 1
        else:
            indices_right[n_right] = indices[i]
            n_right += 1

    hyperplane = np.vstack((hyperplane_inds, hyperplane_data))

    return indices_left, indices_right, hyperplane, hyperplane_offset
Exemplo n.º 4
0
def sparse_angular_random_projection_split(inds, indptr, data, indices,
                                           rng_state):
    """Given a set of ``indices`` for data points from a sparse data set
    presented in csr sparse format as inds, indptr and data, create
    a random hyperplane to split the data, returning two arrays indices
    that fall on either side of the hyperplane. This is the basis for a
    random projection tree, which simply uses this splitting recursively.
    This particular split uses cosine distance to determine the hyperplane
    and which side each data sample falls on.
    Parameters
    ----------
    inds: array
        CSR format index array of the matrix
    indptr: array
        CSR format index pointer array of the matrix
    data: array
        CSR format data array of the matrix
    indices: array of shape (tree_node_size,)
        The indices of the elements in the ``data`` array that are to
        be split in the current operation.
    rng_state: array of int64, shape (3,)
        The internal state of the rng
    Returns
    -------
    indices_left: array
        The elements of ``indices`` that fall on the "left" side of the
        random hyperplane.
    indices_right: array
        The elements of ``indices`` that fall on the "left" side of the
        random hyperplane.
    """
    # Select two random points, set the hyperplane between them
    left_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index = tau_rand_int(rng_state) % indices.shape[0]
    right_index += left_index == right_index
    right_index = right_index % indices.shape[0]
    left = indices[left_index]
    right = indices[right_index]

    left_inds = inds[indptr[left]:indptr[left + 1]]
    left_data = data[indptr[left]:indptr[left + 1]]
    right_inds = inds[indptr[right]:indptr[right + 1]]
    right_data = data[indptr[right]:indptr[right + 1]]

    left_norm = norm(left_data)
    right_norm = norm(right_data)

    if abs(left_norm) < EPS:
        left_norm = 1.0

    if abs(right_norm) < EPS:
        right_norm = 1.0

    # Compute the normal vector to the hyperplane (the vector between
    # the two points)
    normalized_left_data = left_data / left_norm
    normalized_right_data = right_data / right_norm
    hyperplane_inds, hyperplane_data = sparse_diff(left_inds,
                                                   normalized_left_data,
                                                   right_inds,
                                                   normalized_right_data)

    hyperplane_norm = norm(hyperplane_data)
    if abs(hyperplane_norm) < EPS:
        hyperplane_norm = 1.0
    for d in range(hyperplane_data.shape[0]):
        hyperplane_data[d] = hyperplane_data[d] / hyperplane_norm

    # For each point compute the margin (project into normal vector)
    # If we are on lower side of the hyperplane put in one pile, otherwise
    # put it in the other pile (if we hit hyperplane on the nose, flip a coin)
    n_left = 0
    n_right = 0
    side = np.empty(indices.shape[0], np.int8)
    for i in range(indices.shape[0]):
        margin = 0.0

        i_inds = inds[indptr[indices[i]]:indptr[indices[i] + 1]]
        i_data = data[indptr[indices[i]]:indptr[indices[i] + 1]]

        _, mul_data = sparse_mul(hyperplane_inds, hyperplane_data, i_inds,
                                 i_data)
        for d in range(mul_data.shape[0]):
            margin += mul_data[d]

        if abs(margin) < EPS:
            side[i] = tau_rand_int(rng_state) % 2
            if side[i] == 0:
                n_left += 1
            else:
                n_right += 1
        elif margin > 0:
            side[i] = 0
            n_left += 1
        else:
            side[i] = 1
            n_right += 1

    # Now that we have the counts allocate arrays
    indices_left = np.empty(n_left, dtype=np.int64)
    indices_right = np.empty(n_right, dtype=np.int64)

    # Populate the arrays with indices according to which side they fell on
    n_left = 0
    n_right = 0
    for i in range(side.shape[0]):
        if side[i] == 0:
            indices_left[n_left] = indices[i]
            n_left += 1
        else:
            indices_right[n_right] = indices[i]
            n_right += 1

    hyperplane = np.vstack((hyperplane_inds, hyperplane_data))

    return indices_left, indices_right, hyperplane, None