Exemplo n.º 1
0
def test_cuda():

    import numpy
    import matplotlib.pyplot

    # load example image
    import pkg_resources

    ## Define the source of data
    DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/')
    #     PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt')
    import scipy

    image = scipy.misc.ascent()
    image = scipy.misc.imresize(image, (256, 256))
    image = image.astype(numpy.float) / numpy.max(image[...])

    Nd = (256, 256)  # image space size
    Kd = (512, 512)  # k-space size
    Jd = (6, 6)  # interpolation size

    # load k-space points as M * 2 array
    om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0']

    # Show the shape of om
    print('the shape of om = ', om.shape)

    # initiating NUFFT_cpu object
    nfft = NUFFT_cpu()  # CPU NUFFT class

    # Plan the nfft object
    nfft.plan(om, Nd, Kd, Jd)

    # initiating NUFFT_hsa object
    NufftObj = NUFFT_hsa('cuda', 0, 0)

    # Plan the NufftObj (similar to NUFFT_cpu)
    NufftObj.plan(om, Nd, Kd, Jd)

    import time
    t0 = time.time()
    for pp in range(0, 10):

        y = nfft.forward(image)

    t_cpu = (time.time() - t0) / 10.0

    ## Moving image to gpu
    ## gx is an gpu array, dtype = complex64
    gx = NufftObj.to_device(image)

    t0 = time.time()
    for pp in range(0, 100):
        gy = NufftObj.forward(gx)
    t_cu = (time.time() - t0) / 100

    print('t_cpu = ', t_cpu)
    print('t_cuda =, ', t_cu)

    print('gy close? = ',
          numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-3))
    print("acceleration=", t_cpu / t_cu)
    maxiter = 100
    import time
    t0 = time.time()
    x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter)
    #     x2 =  nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2)
    t1 = time.time() - t0
    #     gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2))

    t0 = time.time()
    x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter)
    #     x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2)

    t2 = time.time() - t0
    print(t1, t2)
    print('acceleration of cg=', t1 / t2)

    t0 = time.time()
    x_cpu_TV = nfft.solve(y, 'L1TVOLS', maxiter=maxiter, rho=2)
    t1 = time.time() - t0

    t0 = time.time()

    x_cuda_TV = NufftObj.solve(gy, 'L1TVOLS', maxiter=maxiter, rho=2)

    t2 = time.time() - t0
    print(t1, t2)
    print('acceleration of TV=', t1 / t2)

    matplotlib.pyplot.subplot(2, 2, 1)
    matplotlib.pyplot.imshow(x_cpu_cg.real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('CG_cpu')
    matplotlib.pyplot.subplot(2, 2, 2)
    matplotlib.pyplot.imshow(x_cuda_cg.get().real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('CG_cuda')
    matplotlib.pyplot.subplot(2, 2, 3)
    matplotlib.pyplot.imshow(x_cpu_TV.real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('TV_cpu')
    matplotlib.pyplot.subplot(2, 2, 4)
    matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('TV_cuda')
    matplotlib.pyplot.show()

    NufftObj.release()
    del NufftObj
Exemplo n.º 2
0
def test_opencl_multicoils():

    import numpy
    import matplotlib.pyplot

    # load example image
    import pkg_resources

    ## Define the source of data
    DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/')
    #     PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt')
    import scipy

    image = scipy.misc.ascent()[::2, ::2]
    image = image.astype(numpy.float) / numpy.max(image[...])

    Nd = (256, 256)  # image space size
    Kd = (512, 512)  # k-space size
    Jd = (6, 6)  # interpolation size

    # load k-space points as M * 2 array
    om = numpy.load(DATA_PATH + 'om2D.npz')['arr_0']

    # Show the shape of om
    print('the shape of om = ', om.shape)

    batch = 8

    # initiating NUFFT_cpu object
    nfft = NUFFT_cpu()  # CPU NUFFT class

    # Plan the nfft object
    nfft.plan(om, Nd, Kd, Jd, batch=batch)

    # initiating NUFFT_hsa object
    try:
        NufftObj = NUFFT_hsa('cuda', 0, 0)
    except:
        try:
            NufftObj = NUFFT_hsa('ocl', 1, 0)
        except:
            NufftObj = NUFFT_hsa('ocl', 0, 0)

    # Plan the NufftObj (similar to NUFFT_cpu)
    NufftObj.plan(om, Nd, Kd, Jd, batch=batch, radix=2)
    coil_sense = numpy.ones(Nd + (batch, ), dtype=numpy.complex64)
    for cc in range(0, batch, 2):
        coil_sense[int(256 / batch) * cc:int(256 / batch) * (cc + 1), :,
                   cc].real *= 0.1
        coil_sense[:, int(256 / batch) * cc:int(256 / batch) * (cc + 1),
                   cc].imag *= -0.1

    NufftObj.set_sense(coil_sense)
    nfft.set_sense(coil_sense)
    y = nfft.forward_one2many(image)
    import time
    t0 = time.time()
    for pp in range(0, 2):

        xx = nfft.adjoint_many2one(y)

    t_cpu = (time.time() - t0) / 2

    ## Moving image to gpu
    ## gx is an gpu array, dtype = complex64
    gx = NufftObj.to_device(image)

    gy = NufftObj.forward_one2many(gx)

    t0 = time.time()
    for pp in range(0, 10):

        gxx = NufftObj.adjoint_many2one(gy)
    t_cu = (time.time() - t0) / 10
    print(y.shape, gy.get().shape)
    print('t_cpu = ', t_cpu)
    print('t_cuda =, ', t_cu)

    print('gy close? = ',
          numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y) * 1e-6))
    print('gy error = ',
          numpy.linalg.norm(y - gy.get()) / numpy.linalg.norm(y))
    print('gxx close? = ',
          numpy.allclose(xx, gxx.get(), atol=numpy.linalg.norm(xx) * 1e-6))
    print('gxx error = ',
          numpy.linalg.norm(xx - gxx.get()) / numpy.linalg.norm(xx))
    #     for bb in range(0, batch):
    matplotlib.pyplot.subplot(1, 2, 1)
    matplotlib.pyplot.imshow(xx[...].real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('Adjoint_cpu_coil')
    matplotlib.pyplot.subplot(1, 2, 2)
    matplotlib.pyplot.imshow(gxx.get()[...].real, cmap=matplotlib.cm.gray)
    matplotlib.pyplot.title('Adjoint_hsa_coil')
    #         matplotlib.pyplot.subplot(2, 2, 3)
    #         matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray)
    #         matplotlib.pyplot.title('TV_cpu')#     x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2)
    #         matplotlib.pyplot.subplot(2, 2, 4)
    #         matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray)
    #         matplotlib.pyplot.title('TV_cuda')
    matplotlib.pyplot.show(block=False)
    matplotlib.pyplot.pause(1)
    matplotlib.pyplot.close()

    print("acceleration=", t_cpu / t_cu)
    maxiter = 100
    import time
    t0 = time.time()
    x_cpu_cg = nfft.solve(y, 'cg', maxiter=maxiter)
    #     x2 =  nfft.solve(y2, 'L1TVLAD',maxiter=maxiter, rho = 2)
    t1 = time.time() - t0
    #     gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2))

    t0 = time.time()
    x_cuda_cg = NufftObj.solve(gy, 'cg', maxiter=maxiter)
    #     x = NufftObj.solve(gy,'L1TVLAD', maxiter=maxiter, rho=2)
    print('shape of cg = ', x_cuda_cg.get().shape, x_cpu_cg.shape)
    t2 = time.time() - t0
    print(t1, t2)
    print('acceleration of cg=', t1 / t2)

    t0 = time.time()
    #     x_cpu_TV =  nfft.solve(y, 'L1TVOLS',maxiter=maxiter, rho = 2)
    t1 = time.time() - t0

    t0 = time.time()

    #     x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2)

    t2 = time.time() - t0
    print(t1, t2)
    #     print('acceleration of TV=', t1/t2 )

    #     try:
    for bb in range(0, batch):
        matplotlib.pyplot.subplot(2, batch, 1 + bb)
        matplotlib.pyplot.imshow(x_cpu_cg[..., bb].real,
                                 cmap=matplotlib.cm.gray)
        matplotlib.pyplot.title('CG_cpu_coil_' + str(bb))
        matplotlib.pyplot.subplot(2, batch, 1 + batch + bb)
        matplotlib.pyplot.imshow(x_cuda_cg.get()[..., bb].real,
                                 cmap=matplotlib.cm.gray)
        matplotlib.pyplot.title('CG_hsa_coil_' + str(bb))


#         matplotlib.pyplot.subplot(2, 2, 3)
#         matplotlib.pyplot.imshow( x_cpu_TV.real, cmap= matplotlib.cm.gray)
#         matplotlib.pyplot.title('TV_cpu')#     x_cuda_TV = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2)
#         matplotlib.pyplot.subplot(2, 2, 4)
#         matplotlib.pyplot.imshow(x_cuda_TV.get().real, cmap= matplotlib.cm.gray)
#         matplotlib.pyplot.title('TV_cuda')
    matplotlib.pyplot.show()
    #     except:
    #         print('no matplotlib')

    NufftObj.release()
    del NufftObj
Exemplo n.º 3
0
numpy.random.seed(0)
om = numpy.random.randn(int(5e+5), 3)
print(om.shape)
from pynufft import NUFFT_cpu, NUFFT_hsa, NUFFT_hsa_legacy
NufftObj = NUFFT_hsa(API='ocl', platform_number=1, device_number=0)

NufftObj.plan(om, Nd, Kd, Jd)

# NufftObj.offload(API = 'cuda',   platform_number = 0, device_number = 0)
gx = NufftObj.thr.to_device(image.astype(numpy.complex64))
gy = NufftObj.forward(gx)
import time
t0 = time.time()
restore_x2 = GBPDNA_old(NufftObj, gy, maxiter=5)
t1 = time.time()
restore_x = NufftObj.solve(gy, 'cg', maxiter=50)
t2 = time.time()
print("GBPDNA time = ", t1 - t0)
print("CG time = ", t2 - t1)

#restore_image1 = NufftObj.solve(kspace,'L1TVLAD', maxiter=300,rho=0.1)
#
# restore_x2 = NufftObj.solve(gy,'L1TVOLS', maxiter=100,rho=0.2)
# tau_1 = 1
# tau_2 = 0.1

pyplot.subplot(1, 2, 1)
pyplot.imshow(numpy.real(gx.get()[:, :, mid_slice]),
              label='original signal',
              cmap=gray)
pyplot.title('original')
Exemplo n.º 4
0
def test_init():
    
#     cm = matplotlib.cm.gray
    # load example image
    import pkg_resources
    
    DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/')
#     PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt')
    import numpy
    
#     import matplotlib.pyplot
    
    import scipy

    image = scipy.misc.ascent()[::2,::2]
    image=image.astype(numpy.float)/numpy.max(image[...])

    Nd = (256, 256)  # image space size
    Kd = (512, 512)  # k-space size
    Jd = (6,6)  # interpolation size

    # load k-space points
    om = numpy.load(DATA_PATH+'om2D.npz')['arr_0']

    nfft = NUFFT_cpu()  # CPU
    
    nfft.plan(om, Nd, Kd, Jd)
    try:
        NufftObj = NUFFT_hsa('cuda',0,0)
    except:
        NufftObj = NUFFT_hsa('ocl',0,0)
#     NufftObj2 = NUFFT_hsa('cuda',0,0)
    NufftObj.debug = 1
    NufftObj.plan(om, Nd, Kd, Jd, radix=2)
#     NufftObj2.plan(om, Nd, Kd, Jd)
    
#     NufftObj.offload(API = 'cuda',   platform_number = 0, device_number = 0)
#     NufftObj2.offload(API = 'cuda',   platform_number = 0, device_number = 0)
#     NufftObj2.offload('cuda')
#     NufftObj.offload(API = 'cuda',   platform_number = 0, device_number = 0)
#     print('api=', NufftObj.thr.api_name())
#     NufftObj.offload(API = 'ocl',   platform_number = 0, device_number = 0)
    y = nfft.k2y(nfft.xx2k(nfft.x2xx(image)))
    
    NufftObj.x_Nd = NufftObj.thr.to_device( image.astype(dtype))
    
    gx = NufftObj.thr.copy_array(NufftObj.x_Nd)
    
    print('x close? = ', numpy.allclose(image, gx.get() , atol=1e-4))
    gxx = NufftObj.x2xx(gx)    

    print('xx close? = ', numpy.allclose(nfft.x2xx(image), gxx.get() , atol=1e-4))        

    gk = NufftObj.xx2k(gxx)    

    k = nfft.xx2k(nfft.x2xx(image))
    
    print('k close? = ', numpy.allclose(nfft.xx2k(nfft.x2xx(image)), gk.get(), atol=1e-3*numpy.linalg.norm(k)))   
    gy = NufftObj.k2y(gk)    
    k2 = NufftObj.y2k(gy)
    print('y close? = ', numpy.allclose(y, gy.get() ,  atol=1e-3*numpy.linalg.norm(y)), numpy.linalg.norm((y - gy.get())/numpy.linalg.norm(y)))
    y2 = y
    print('k2 close? = ', numpy.allclose(nfft.y2k(y2), k2.get(), atol=1e-3*numpy.linalg.norm(nfft.y2k(y2)) ), numpy.linalg.norm(( nfft.y2k(y2)- k2.get())/numpy.linalg.norm(nfft.y2k(y2))))   
    gxx2 = NufftObj.k2xx(k2)
#     print('xx close? = ', numpy.allclose(nfft.k2xx(nfft.y2k(y2)), NufftObj.xx_Nd.get(queue=NufftObj.queue, async=False) , atol=0.1))
    gx2 = NufftObj.xx2x(gxx2)
    print('x close? = ', numpy.allclose(nfft.adjoint(y2), gx2.get() , atol=1e-3*numpy.linalg.norm(nfft.adjoint(y2))))
    image3 = gx2.get() 
    import time
    t0 = time.time()
#     k = nfft.xx2k(nfft.x2xx(image))
    for pp in range(0,50):
#         y = nfft.k2y(nfft.xx2k(nfft.x2xx(image)))    
            y = nfft.forward(image)
#             y = nfft.k2y(k)
#                 k = nfft.y2k(y)
#             x = nfft.adjoint(y)
#             y = nfft.forward(image)
#     y2 = NufftObj.y.get(   NufftObj.queue, async=False)
    t_cpu = (time.time() - t0)/50.0 
    print(t_cpu)
    
#     del nfft
        
    gy2=NufftObj.forward(gx)
#     gk =     NufftObj.xx2k(NufftObj.x2xx(gx))
    t0= time.time()
    for pp in range(0,20):
#         pass
        gy2 = NufftObj.forward(gx)
#         gy2 = NufftObj.k2y(gk)
#             gx2 = NufftObj.adjoint(gy2)
#             gk2 = NufftObj.y2k(gy2)
#         del gy2
#     c = gx2.get()
#         gy=NufftObj.forward(gx)        
        
    NufftObj.thr.synchronize()
    t_cl = (time.time() - t0)/20
    print(t_cl)
    
    print('gy close? = ', numpy.allclose(y, gy.get(),  atol=numpy.linalg.norm(y)*1e-3))
    print("acceleration=", t_cpu/t_cl)
    maxiter =100
    import time
    t0= time.time()
#     x2 =  nfft.solve(y2, 'cg',maxiter=maxiter)
    x2 =  nfft.solve(y2, 'L1TVOLS',maxiter=maxiter, rho = 2)
    t1 = time.time()-t0 
#     gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2))
    
    t0= time.time()

#     x = NufftObj.solve(gy,'cg', maxiter=maxiter)
    x = NufftObj.solve(gy,'L1TVOLS', maxiter=maxiter, rho=2)
    
    t2 = time.time() - t0
    print(t1, t2)
    print('acceleration=', t1/t2 )
#     k = x.get()
#     x = nfft.k2xx(k)/nfft.st['sn']
#     return
    try:
        import matplotlib.pyplot
        matplotlib.pyplot.subplot(1, 2, 1)
        matplotlib.pyplot.imshow( x.get().real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1)
        matplotlib.pyplot.title("HSA reconstruction")
        matplotlib.pyplot.subplot(1, 2,2)
        matplotlib.pyplot.imshow(x2.real, cmap= matplotlib.cm.gray)
        matplotlib.pyplot.title("CPU reconstruction")
        matplotlib.pyplot.show(block = False)
        matplotlib.pyplot.pause(3)
        matplotlib.pyplot.close()
#         del NufftObj.thr
#         del NufftObj
    except:
        print("no graphics")