def tagAnomalies(df): values = df.prediction.values.reshape(-1, 1) anomalyDetector = LOCI() anomalyDetector.fit(values) anomalyLabels = np.asarray(anomalyDetector.labels_) df['isAnomaly'] = anomalyLabels return df
def loci(X): alpha = 0.5 k = 3 clf = LOCI(alpha=alpha, k=k) clf.fit(X) label = clf.labels_ #return label writeLabel(label) return
def setUp(self): self.n_train = 200 self.n_test = 100 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = LOCI(contamination=self.contamination) self.clf.fit(self.X_train)
def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.6 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = LOCI(contamination=self.contamination) self.clf.fit(self.X_train)
def choose_model(model, nnet): """ among implemented in PyOD """ clfs = { 'AE': AutoEncoder(hidden_neurons=nnet, contamination=0.1, epochs=15), 'VAE': VAE(encoder_neurons=nnet[:5], decoder_neurons=nnet[4:], contamination=0.1, epochs=13), 'ABOD': ABOD(), 'FeatureBagging': FeatureBagging(), 'HBOS': HBOS(), 'IForest': IForest(), 'KNN': KNN(), 'LOF': LOF(), 'OCSVM': OCSVM(), 'PCA': PCA(), 'SOS': SOS(), 'COF': COF(), 'CBLOF': CBLOF(), 'SOD': SOD(), 'LOCI': LOCI(), 'MCD': MCD() } return clfs[model]
def runMethod(self): ''' @brief This function is the actual implementation of HICS ''' if self.verbose: print("Calculating the subspaces\n") # First we obtain the high contrast subspaces subspaces = self.hicsFramework() if self.verbose: print("Now calculating the scoring\n") # We initialize the scores for each instance as 0 scores = np.zeros(len(self.dataset)) # For each subspace for sub in subspaces: # We place the corresponding scorer according to parameter scorer = None if self.outlier_rank == "lof": scorer = LOF() elif self.outlier_rank == "cof": scorer = COF() elif self.outlier_rank == "cblof": scorer = CBLOF() elif self.outlier_rank == "loci": scorer = LOCI() elif self.outlier_rank == "hbos": scorer = HBOS() elif self.outlier_rank == "sod": scorer = SOD() # Fits the scorer with the dataset projection scorer.fit(self.dataset[:, sub]) # Adds the scores obtained to the global ones scores = scores + scorer.decision_scores_ # Compute the average self.outlier_score = scores / len(subspaces) # Marks the calculations as done self.calculations_done = True
coef = algorith.fit_predict(data[:, :-1]) coef = (coef - coef.min()) / (coef.max() - coef.min()) fpr, tpr, _ = roc_curve(data[:, -1], coef) roc_auc = auc(fpr, tpr) file_result.append(roc_auc) #kDIST algorith = kdist.KDIST(k=60, t=0.1) coef = algorith.fit_predict(data[:, :-1]) coef = (coef - coef.min()) / (coef.max() - coef.min()) fpr, tpr, _ = roc_curve(data[:, -1], coef) roc_auc = auc(fpr, tpr) file_result.append(roc_auc) #LOCI clf = LOCI() clf.fit(data[:, :-1]) coef = clf.decision_scores_ coef = np.abs(coef) coef = (coef - coef.min()) / (coef.max() - coef.min()) fpr, tpr, _ = roc_curve(data[:, -1], coef) roc_auc = auc(fpr, tpr) file_result.append(roc_auc) result = np.array(file_result) print('hi') ############################################################################## ## file1 data = load.load_data(files[1], sep=',') # k = 20 file_result = []
class TestLOCI(unittest.TestCase): def setUp(self): self.n_train = 200 self.n_test = 100 self.contamination = 0.1 self.roc_floor = 0.8 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = LOCI(contamination=self.contamination) self.clf.fit(self.X_train) def test_sklearn_estimator(self): # TODO: sklearn check does not support Numba optimization # check_estimator(self.clf) pass def test_parameters(self): assert_true( hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert_true( hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert_true( hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def tearDown(self): pass
if __name__ == "__main__": contamination = 0.1 # percentage of outliers n_train = 200 # number of training points n_test = 100 # number of testing points # Generate sample data X_train, y_train, X_test, y_test = \ generate_data(n_train=n_train, n_test=n_test, n_features=2, contamination=contamination, random_state=42) # train LOCI detector clf_name = 'LOCI' clf = LOCI() clf.fit(X_train) # get the prediction labels and outlier scores of the training data y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers) y_train_scores = clf.decision_scores_ # raw outlier scores # get the prediction on the test data y_test_pred = clf.predict(X_test) # outlier labels (0 or 1) y_test_scores = clf.decision_function(X_test) # outlier scores # evaluate and print the results print("\nOn Training Data:") evaluate_print(clf_name, y_train, y_train_scores) print("\nOn Test Data:") evaluate_print(clf_name, y_test, y_test_scores)
def initialise_pyod_classifiers(self, outlier_fraction): #Testing every query to every class and then predicting only if it belongs to the same class classifiers = {} #Proximity based classifiers['K Nearest Neighbors (KNN)'] = [] classifiers['Average K Nearest Neighbors (AvgKNN)'] = [] classifiers['Median K Nearest Neighbors (MedKNN)'] = [] classifiers['Local Outlier Factor (LOF)'] = [] classifiers['Connectivity-Based Outlier Factor (COF)'] = [] #classifiers['Clustering-Based Local Outlier Factor (CBLOF)'] = [] classifiers['LOCI'] = [] #classifiers['Histogram-based Outlier Score (HBOS)'] = [] classifiers['Subspace Outlier Detection (SOD)'] = [] #Linear models classifiers['Principal Component Analysis (PCA)'] = [] #classifiers['Minimum Covariance Determinant (MCD)'] = [] #To slow classifiers['One-Class Support Vector Machines (OCSVM)'] = [] classifiers['Deviation-based Outlier Detection (LMDD)'] = [] #Probabilistic classifiers['Angle-Based Outlier Detection (ABOD)'] = [] classifiers['Stochastic Outlier Selection (SOS)'] = [] #Outlier Ensembles classifiers['Isolation Forest (IForest)'] = [] classifiers['Feature Bagging'] = [] classifiers['Lightweight On-line Detector of Anomalies (LODA)'] = [] for i in range(self.k_way): for i in range(self.k_way): classifiers['K Nearest Neighbors (KNN)'].append( KNN(method='largest', n_neighbors=int(self.n_shot / 3) + 1, contamination=outlier_fraction)) classifiers['Average K Nearest Neighbors (AvgKNN)'].append( KNN(method='mean', n_neighbors=int(self.n_shot / 3) + 1, contamination=outlier_fraction)) classifiers['Median K Nearest Neighbors (MedKNN)'].append( KNN(method='median', n_neighbors=int(self.n_shot / 3) + 1, contamination=outlier_fraction)) classifiers['Local Outlier Factor (LOF)'].append( LOF(n_neighbors=int(self.n_shot / 3) + 1, contamination=outlier_fraction)) classifiers['Connectivity-Based Outlier Factor (COF)'].append( COF(n_neighbors=int(self.n_shot / 3) + 1, contamination=outlier_fraction)) classifiers['LOCI'].append( LOCI(contamination=outlier_fraction)) classifiers['Subspace Outlier Detection (SOD)'].append( SOD(n_neighbors=int(self.n_shot / 3) + 2, contamination=outlier_fraction, ref_set=max(2, int((int(self.n_shot / 3) + 2) / 3)))) classifiers['Principal Component Analysis (PCA)'].append( PCA(contamination=outlier_fraction)) classifiers[ 'One-Class Support Vector Machines (OCSVM)'].append( OCSVM(contamination=outlier_fraction)) classifiers['Deviation-based Outlier Detection (LMDD)'].append( LMDD(contamination=outlier_fraction)) classifiers['Angle-Based Outlier Detection (ABOD)'].append( ABOD(contamination=outlier_fraction)) classifiers['Stochastic Outlier Selection (SOS)'].append( SOS(contamination=outlier_fraction)) classifiers['Isolation Forest (IForest)'].append( IForest(contamination=outlier_fraction)) classifiers['Feature Bagging'].append( FeatureBagging(contamination=outlier_fraction)) classifiers[ 'Lightweight On-line Detector of Anomalies (LODA)'].append( LODA(contamination=outlier_fraction)) self.num_different_models = len(classifiers) return classifiers
class TestLOCI(unittest.TestCase): def setUp(self): self.n_train = 100 self.n_test = 50 self.contamination = 0.1 self.roc_floor = 0.6 self.X_train, self.y_train, self.X_test, self.y_test = generate_data( n_train=self.n_train, n_test=self.n_test, contamination=self.contamination, random_state=42) self.clf = LOCI(contamination=self.contamination) self.clf.fit(self.X_train) def test_sklearn_estimator(self): # TODO: sklearn check does not support Numba optimization # check_estimator(self.clf) pass def test_parameters(self): assert_true(hasattr(self.clf, 'decision_scores_') and self.clf.decision_scores_ is not None) assert_true(hasattr(self.clf, 'labels_') and self.clf.labels_ is not None) assert_true(hasattr(self.clf, 'threshold_') and self.clf.threshold_ is not None) def test_train_scores(self): assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0]) def test_prediction_scores(self): pred_scores = self.clf.decision_function(self.X_test) # check score shapes assert_equal(pred_scores.shape[0], self.X_test.shape[0]) # check performance assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor) def test_prediction_labels(self): pred_labels = self.clf.predict(self.X_test) assert_equal(pred_labels.shape, self.y_test.shape) def test_prediction_proba(self): pred_proba = self.clf.predict_proba(self.X_test) assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_linear(self): pred_proba = self.clf.predict_proba(self.X_test, method='linear') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_unify(self): pred_proba = self.clf.predict_proba(self.X_test, method='unify') assert_greater_equal(pred_proba.min(), 0) assert_less_equal(pred_proba.max(), 1) def test_prediction_proba_parameter(self): with assert_raises(ValueError): self.clf.predict_proba(self.X_test, method='something') def test_fit_predict(self): pred_labels = self.clf.fit_predict(self.X_train) assert_equal(pred_labels.shape, self.y_train.shape) def test_fit_predict_score(self): self.clf.fit_predict_score(self.X_test, self.y_test) self.clf.fit_predict_score(self.X_test, self.y_test, scoring='roc_auc_score') self.clf.fit_predict_score(self.X_test, self.y_test, scoring='prc_n_score') with assert_raises(NotImplementedError): self.clf.fit_predict_score(self.X_test, self.y_test, scoring='something') def test_predict_rank(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, self.X_train.shape[0] + 1) assert_array_less(-0.1, pred_ranks) def test_predict_rank_normalized(self): pred_socres = self.clf.decision_function(self.X_test) pred_ranks = self.clf._predict_rank(self.X_test, normalized=True) # assert the order is reserved assert_allclose(rankdata(pred_ranks), rankdata(pred_socres), atol=3) assert_array_less(pred_ranks, 1.01) assert_array_less(-0.1, pred_ranks) def tearDown(self): pass
def pyod_init(model, n_features=None): # initial model set up if model == 'abod': from pyod.models.abod import ABOD clf = ABOD() elif model == 'auto_encoder' and n_features: #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from pyod.models.auto_encoder import AutoEncoder clf = AutoEncoder(hidden_neurons=[ n_features, n_features * 5, n_features * 5, n_features ], epochs=5, batch_size=64, preprocessing=False) elif model == 'cblof': from pyod.models.cblof import CBLOF clf = CBLOF(n_clusters=4) elif model == 'hbos': from pyod.models.hbos import HBOS clf = HBOS() elif model == 'iforest': from pyod.models.iforest import IForest clf = IForest() elif model == 'knn': from pyod.models.knn import KNN clf = KNN() elif model == 'lmdd': from pyod.models.lmdd import LMDD clf = LMDD() elif model == 'loci': from pyod.models.loci import LOCI clf = LOCI() elif model == 'loda': from pyod.models.loda import LODA clf = LODA() elif model == 'lof': from pyod.models.lof import LOF clf = LOF() elif model == 'mcd': from pyod.models.mcd import MCD clf = MCD() elif model == 'ocsvm': from pyod.models.ocsvm import OCSVM clf = OCSVM() elif model == 'pca': from pyod.models.pca import PCA clf = PCA() elif model == 'sod': from pyod.models.sod import SOD clf = SOD() elif model == 'vae': from pyod.models.vae import VAE clf = VAE() elif model == 'xgbod': from pyod.models.xgbod import XGBOD clf = XGBOD() else: #raise ValueError(f"unknown model {model}") clf = PyODDefaultModel() return clf