def getOulierMOGAAL(dataset):
    '''
    @brief Function that executes MO_GAAL algorithm on the dataset and obtains the
    labels of the dataset indicating which instance is an inlier (0) or outlier (1)
    @param dataset Dataset on which to try the algorithm
    @return It returns a list of labels 0 means inlier, 1 means outlier
    '''
    # Initializating the model
    mg = MO_GAAL()
    # Fits the data and obtains labels
    mg.fit(dataset)
    # Return labels
    return mg.labels_
Exemplo n.º 2
0
    def setUp(self):
        self.n_train = 1000
        self.n_test = 200
        self.n_features = 2
        self.contamination = 0.1
        # GAN may yield unstable results; turning performance check off
        # self.roc_floor = 0.8
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train, n_test=self.n_test,
            n_features=self.n_features, contamination=self.contamination,
            random_state=42)

        self.clf = MO_GAAL(k=1, stop_epochs=2,
                           contamination=self.contamination)
        self.clf.fit(self.X_train)
Exemplo n.º 3
0
def _mo_gaal_experiment(dataset_load_fn, dataset_name, single_class_ind):
    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    x_train = x_train.reshape((len(x_train), -1))
    x_test = x_test.reshape((len(x_test), -1))

    x_train_task = x_train[y_train.flatten() == single_class_ind]

    best_mo_gaal = MO_GAAL().fit(x_train_task)
    scores = best_mo_gaal.decision_function(x_test)
    labels = y_test.flatten() == single_class_ind

    res_file_name = '{}_mo-gaal_{}_{}.npz'.format(
        dataset_name, get_class_name_from_index(single_class_ind,
                                                dataset_name),
        datetime.datetime.now().strftime('%Y-%m-%d-%H%M'))
    res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
    save_roc_pr_curve_data(scores, labels, res_file_path)
Exemplo n.º 4
0
def main():

    scalers = ['no', 'std', 'minmax']
    root = 'Unsupervised_Anamaly_Detection_csv'
    start = 0
    counts = 90
    CPUS = 3
    CPUS_Models = 4
    sklearn_models = [
        'AvgKNN', 'LargestKNN', 'MedKNN', 'PCA', 'COF', 'LODA', 'LOF', 'HBOS',
        'MCD', 'AvgBagging', 'MaxBagging', 'IForest', 'CBLOF', 'COPOD', 'SOD',
        'LSCPwithLODA', 'AveLMDD', 'VarLMDD', 'IqrLMDD', 'SoGaal', 'MoGaal',
        'VAE', 'AutoEncoder'
    ]

    models = {
        'BRM': BRM(bootstrap_sample_percent=70),
        'GM': GaussianMixture(),
        'IF': IsolationForest(),
        'OCSVM': OneClassSVM(),
        'EE': EllipticEnvelope(),
        'AvgKNN': KNN(method='mean'),
        'LargestKNN': KNN(method='largest'),
        'MedKNN': KNN(method='median'),
        'PCA': PCA(),
        'COF': COF(),
        'LODA': LODA(),
        'LOF': LOF(),
        'HBOS': HBOS(),
        'MCD': MCD(),
        'AvgBagging': FeatureBagging(combination='average'),
        'MaxBagging': FeatureBagging(combination='max'),
        'CBLOF': CBLOF(n_clusters=10, n_jobs=4),
        'FactorAnalysis': FactorAnalysis(),
        'KernelDensity': KernelDensity(),
        'COPOD': COPOD(),
        'SOD': SOD(),
        'LSCPwithLODA': LSCP([LODA(), LODA()]),
        'AveLMDD': LMDD(dis_measure='aad'),
        'VarLMDD': LMDD(dis_measure='var'),
        'IqrLMDD': LMDD(dis_measure='iqr'),
        'SoGaal': SO_GAAL(),
        'MoGaal': MO_GAAL(),
        'VAE': VAE(encoder_neurons=[8, 4, 2]),
        'AutoEncoder': AutoEncoder(hidden_neurons=[6, 3, 3, 6]),
        'OCKRA': m_OCKRA(),
    }

    name = "30_Models"

    Parallel(n_jobs=CPUS) \
        (delayed(runByScaler)
         (root, scaler, models, start, counts,
          other_models=sklearn_models,
          CPUS=CPUS_Models,
          save_name=name)
         for scaler in scalers)
Exemplo n.º 5
0
    def setUp(self):
        self.n_train = 3000
        self.n_test = 1000
        self.n_features = 10
        self.contamination = 0.1
        # TODO: GAN may yield unstable results; turning performance check off
        # self.roc_floor = 0.8
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train, n_test=self.n_test,
            n_features=self.n_features, contamination=self.contamination,
            random_state=42)

        self.clf = MO_GAAL(k=1, stop_epochs=2,
                           contamination=self.contamination)
        self.clf.fit(self.X_train)
Exemplo n.º 6
0
    def __init__(
            self,
            *,
            hyperparams: Hyperparams,  #
            random_seed: int = 0,
            docker_containers: Dict[str, DockerContainer] = None) -> None:
        super().__init__(hyperparams=hyperparams,
                         random_seed=random_seed,
                         docker_containers=docker_containers)

        self._clf = MO_GAAL(
            stop_epochs=hyperparams['stop_epochs'],
            k=hyperparams['k'],
            lr_d=hyperparams['lr_d'],
            lr_g=hyperparams['lr_g'],
            decay=hyperparams['decay'],
            momentum=hyperparams['momentum'],
            contamination=hyperparams['contamination'],
        )

        return
Exemplo n.º 7
0
def main():

    # PART 1:
    # Getting the predictions for each classifier
    # SK means: The classifier is from sklearn or works like sklearn
    # PY means: The classifier is from pyod or works like pyod

    models = {
        'SK_EE': EllipticEnvelope(),
        'SK_GM': GaussianMixture(),
        'SK_IF': IsolationForest(),
        'SK_OCSVM': OneClassSVM(),
        'SK_FA': FactorAnalysis(),
        'SK_KD': KernelDensity(),
        'PY_PCA': PCA(),
        'PY_COF': COF(),
        'PY_LODA': LODA(),
        'PY_LOF': LOF(),
        'PY_HBOS': HBOS(),
        'PY_MCD': MCD(),
        'PY_AvgKNN': KNN(method='mean'),
        'PY_LargestKNN': KNN(method='largest'),
        'PY_MedKNN': KNN(method='median'),
        'PY_AvgBagging': FeatureBagging(combination='average'),
        'PY_MaxBagging': FeatureBagging(combination='max'),
        'PY_CBLOF': CBLOF(n_clusters=10, n_jobs=4),
        'PY_COPOD': COPOD(),
        'PY_SOD': SOD(),
        'PY_LSCPwithLODA': LSCP([LODA(), LODA()]),
        'PY_AveLMDD': LMDD(dis_measure='aad'),
        'PY_VarLMDD': LMDD(dis_measure='var'),
        'PY_IqrLMDD': LMDD(dis_measure='iqr'),
        'PY_VAE': VAE(encoder_neurons=[8, 4, 2]),
        'PY_AutoEncoder': AutoEncoder(hidden_neurons=[6, 3, 3, 6]),
        'SK_BRM': BRM(bootstrap_sample_percent=70),
        'SK_OCKRA': m_OCKRA(),
        'PY_SoGaal': SO_GAAL(),
        'PY_MoGaal': MO_GAAL()
    }
    ranker = ADRanker(data="datasets", models=models)
    ranker.get_predictions()

    # PART 2:
    # After predictions, we can evaluate our classifiers using different scores
    # You can add manually a new metric by modifying 'metrics.py'

    ranker.get_scores(scores={'auc': Metrics.get_roc, 'ave': Metrics.get_ave})

    # PART 3:
    # Finally, it is time to summarize the results by plotting different graphs
    # You can add your own graphs by modifying ' plots.py'
    plot = Plots()
    plot.make_plot_basic(paths=[
        'results/scores/auc/no/results.csv',
        'results/scores/auc/minmax/results.csv',
        'results/scores/auc/std/results.csv',
        'results/scores/ave/no/results.csv',
        'results/scores/ave/minmax/results.csv',
        'results/scores/ave/std/results.csv'
    ],
                         scalers=[
                             'Without scaler', 'Min max scaler',
                             'Standard scaler', 'Without scaler',
                             'Min max scaler', 'Standard scaler'
                         ])

    plot.make_cd_plot(
        paths=[
            'results/scores/auc/minmax/results.csv',
            'results/scores/ave/no/results.csv',
            'results/scores/auc/no/results.csv',
            'results/scores/ave/no/results.csv',
            'results/scores/auc/std/results.csv',
            'results/scores/ave/std/results.csv'
        ],
        names=[
            'CD auc minmax scale', 'CD ave minmax scale', 'CD auc no scale',
            'CD ave no scale', 'CD auc std scale', 'CD ave std scale'
        ],
        titles=[
            'CD diagram - AUC with min max scaling',
            'CD diagram - Average precision with min max scaling',
            'CD diagram - AUC without scaling',
            'CD diagram - Average precision without scaling',
            'CD diagram - AUC with standard scaling',
            'CD diagram - Average precision with  standard scaling'
        ])
Exemplo n.º 8
0
class TestMO_GAAL(unittest.TestCase):
    """
    Notes: GAN may yield unstable results, so the test is design for running
    models only, without any performance check.
    """
    def setUp(self):
        self.n_train = 1000
        self.n_test = 200
        self.n_features = 2
        self.contamination = 0.1
        # GAN may yield unstable results; turning performance check off
        # self.roc_floor = 0.8
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            n_features=self.n_features,
            contamination=self.contamination,
            random_state=42)

        self.clf = MO_GAAL(k=1,
                           stop_epochs=2,
                           contamination=self.contamination)
        self.clf.fit(self.X_train)

    def test_parameters(self):
        assert (hasattr(self.clf, 'decision_scores_')
                and self.clf.decision_scores_ is not None)
        assert (hasattr(self.clf, 'labels_') and self.clf.labels_ is not None)
        assert (hasattr(self.clf, 'threshold_')
                and self.clf.threshold_ is not None)
        assert (hasattr(self.clf, '_mu') and self.clf._mu is not None)
        assert (hasattr(self.clf, '_sigma') and self.clf._sigma is not None)
        assert (hasattr(self.clf, 'discriminator')
                and self.clf.discriminator is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        # assert (roc_auc_score(self.y_test, pred_scores) >= self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert (pred_proba.min() >= 0)
        assert (pred_proba.max() <= 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test,
                                   self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test,
                                       self.y_test,
                                       scoring='something')

    def tearDown(self):
        pass
    detector_list = [LOF(), LOF()]

    models = [
        # BRM github
        (brminer.BRM(), 'BRM'),
        # ocSVM sklearn
        (OneClassSVM(gamma='auto'), 'ocSVM'),
        # COF pyod
        (COF(contamination=0.1, n_neighbors=20), 'COF'),
        # ABOD pyod
        (ABOD(contamination=0.1, n_neighbors=5, method='fast'), 'ABOD'),
        # MO_GAAL pyod
        (MO_GAAL(k=10,
                 stop_epochs=20,
                 lr_d=0.01,
                 lr_g=0.0001,
                 decay=1e-06,
                 momentum=0.9,
                 contamination=0.1), 'MO_GAAL'),
        # SO_GAAL pyod
        (SO_GAAL(stop_epochs=20,
                 lr_d=0.01,
                 lr_g=0.0001,
                 decay=1e-06,
                 momentum=0.9,
                 contamination=0.1), 'SO_GAAL'),
        # OCKRA github
        (m_ockra.m_OCKRA(), 'OCKRA'),
        # VAR LMDD pyOD
        (LMDD(dis_measure='var', random_state=rs), 'VAR_LMDD'),
        # LOCI pyod
Exemplo n.º 10
0
    contamination = 0.1  # percentage of outliers
    n_train = 20000  # number of training points
    n_test = 2000  # number of testing points
    n_features = 300  # number of features

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=n_features,
                      contamination=contamination,
                      random_state=42)

    # train MO_GAAL detector
    clf_name = 'MO_GAAL'
    clf = MO_GAAL(k=3, stop_epochs=2, contamination=contamination)
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores

    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)
Exemplo n.º 11
0
    def execute(self):
        evaluation_results = []

        print("Loading training data...")
        data = pd.DataFrame()

        for i, chunk in enumerate(
                pd.read_csv(self.input_file,
                            header=None,
                            chunksize=self.chunk_size)):
            print("Reading chunk: %d" % (i + 1))
            #print(chunk)
            data = data.append(chunk)

        input_dimensionality = len(data.columns) - 1
        print("Input Dimensionality: %d" % (input_dimensionality))

        positive_data = data[data[len(data.columns) -
                                  1] == 1].iloc[:, :len(data.columns) - 1]
        negative_data = data[data[len(data.columns) -
                                  1] == -1].iloc[:, :len(data.columns) - 1]

        training_data = positive_data.sample(frac=0.70)
        positive_validation_data = positive_data.drop(training_data.index)

        if self.neg_cont and self.neg_cont > 0:
            print("Negative Contamination: %0.4f" % (self.neg_cont))
            num_negative = math.floor(
                self.neg_cont *
                (len(negative_data) + len(positive_validation_data)))
            negative_data = data.sample(frac=1, random_state=200)[
                data[len(data.columns) -
                     1] == -1].iloc[:num_negative, :len(data.columns) - 1]

        negative_validation_data = negative_data.copy()

        temp_positive = positive_validation_data.copy()
        temp_positive[input_dimensionality] = 1

        temp_negative = negative_data.copy()
        temp_negative[input_dimensionality] = -1

        validation_data_with_labels = pd.concat([temp_positive, temp_negative],
                                                ignore_index=True)
        validation_data = validation_data_with_labels.iloc[:, :len(data.columns
                                                                   ) - 1]
        validation_labels = validation_data_with_labels.iloc[:, -1:].values

        # Convert to tensor
        positive_data = torch.tensor(positive_data.values).float().to(
            self.device)
        negative_data = torch.tensor(negative_data.values).float().to(
            self.device)
        training_data = torch.tensor(training_data.values).float()
        validation_data = torch.tensor(validation_data.values).float()

        print("Validation Data:")
        print(validation_data)

        ## AE-D TRAINING ##
        print("Initializing autoencoder...")
        net = Autoencoder(layers=self.layers,
                          device=self.device,
                          add_syn=self.add_syn)
        net.to(self.device)

        print(net)

        print("Training Stochastic Autoencoder...")
        net.fit(training_data,
                epochs=self.epochs,
                lr=self.lr,
                batch_size=self.batch_size)

        predictions = net.predict(validation_data)

        tp, tn, fp, fn, tpr, tnr, ppv, npv, ts, pt, acc, f1, mcc = performance_metrics(
            validation_labels, predictions)

        r = ["AE-D", tp, tn, fp, fn, tpr, tnr, ppv, npv, ts, pt, acc, f1, mcc]

        evaluation_results.append(r)

        print("AE-D Results:")
        print(
            tabulate([r], [
                "ALGO", "TP", "TN", "FP", "FN", "TPR", "TNR", "PPV", "NPV",
                "TS", "PT", "ACC", "F1", "MCC"
            ],
                     tablefmt="grid"))

        # Convert back to CPU before other methods
        validation_data = validation_data.cpu()

        # Train only linear classifiers
        if self.eval_cat == "linear":
            print("Initiating training for linear detectors...")

            ## MCD ##
            print("Training MCD...")
            result = train_and_evaluate_classifier("MCD", MCD(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

            ## ROBUST COVARIANCE ##
            print("Training Robust Covariance...")
            result = train_and_evaluate_classifier("ROB-COV",
                                                   EllipticEnvelope(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

            ## ONE CLASS SVM TRAINING ##
            print("Training OneClassSVM...")
            result = train_and_evaluate_classifier(
                "OC-SVM", svm.OneClassSVM(gamma="auto"), validation_data,
                validation_labels)
            evaluation_results.append(result)

        elif self.eval_cat == "prob":
            ## ABOD ##
            #print("Training ABOD...")
            #result = train_and_evaluate_classifier("ABOD", ABOD(), validation_data, validation_labels)
            #evaluation_results.append(result)

            ## SOS ##
            #print("Training SOS...")
            #result = train_and_evaluate_classifier("SOS", SOS(), validation_data, validation_labels)
            #evaluation_results.append(result)

            ## COPOD ##
            print("Training COPOD...")
            result = train_and_evaluate_classifier("COPOD", COPOD(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

        elif self.eval_cat == "ensemble":
            ## ISOLATION FOREST TRAINING ##
            print("Training Isolation Forest...")
            result = train_and_evaluate_classifier(
                "ISO-F", IsolationForest(random_state=0), validation_data,
                validation_labels)
            evaluation_results.append(result)

            ## LODA ##
            print("Training LODA...")
            result = train_and_evaluate_classifier("LODA", LODA(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

            ## LSCP ##


#      print("Training LSCP...")
#      result = train_and_evaluate_classifier("LSCP", LSCP([LOF(), LOF()]), validation_data, validation_labels)
#      evaluation_results.append(result)

        elif self.eval_cat == "proximity":
            ## LOCAL OUTLIER FACTOR ##
            print("Training Local Outlier Factor...")
            result = train_and_evaluate_classifier(
                "LOC-OF", LocalOutlierFactor(novelty=True), validation_data,
                validation_labels)
            evaluation_results.append(result)

            ## CBLOF ##
            print("Training CBLOF...")
            result = train_and_evaluate_classifier("CBLOF", CBLOF(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

            ## HBOS ##
            print("Training HBOS...")
            result = train_and_evaluate_classifier("HBOS", HBOS(),
                                                   validation_data,
                                                   validation_labels)
            evaluation_results.append(result)

        elif self.eval_cat == "nn":
            ## VAE ##
            print("Training VAE...")
            result = train_and_evaluate_classifier(
                "VAE",
                VAE(encoder_neurons=self.layers,
                    decoder_neurons=self.layers.reverse()), validation_data,
                validation_labels)
            evaluation_results.append(result)

            ## SO_GAAL ##
            print("Training SO_GAAL...")
            result = train_and_evaluate_classifier(
                "SO_GAAL", SO_GAAL(lr_d=self.lr, stop_epochs=self.epochs),
                validation_data, validation_labels)
            evaluation_results.append(result)

            ## MO_GAAL ##
            print("Training MO_GAAL...")
            result = train_and_evaluate_classifier(
                "MO_GAAL", MO_GAAL(lr_d=self.lr, stop_epochs=self.epochs),
                validation_data, validation_labels)
            evaluation_results.append(result)

        ## EVALUATE RESULTS ##
        if self.eval_cat != "none":
            print("Aggregated Results:")
            print(
                tabulate(evaluation_results, [
                    "ALGO", "TP", "TN", "FP", "FN", "TPR", "TNR", "PPV", "NPV",
                    "TS", "PT", "ACC", "F1", "MCC"
                ],
                         tablefmt="grid"))

        ## DATASET METRICS ##
        len_training_data_points = len(training_data)
        len_positive_validations = len(positive_validation_data)
        len_negative_validations = len(negative_validation_data)
        len_validations = len_positive_validations + len_negative_validations

        metrics_results = [
            ["Training Data Points", len_training_data_points],
            ["# Normal Points", len_positive_validations],
            ["# Anomalies", len_negative_validations],
            [
                "Contamination Percentage",
                math.floor((len_negative_validations / len_validations) * 100)
            ]
        ]

        ## EVALUATE RESULTS ##
        print(tabulate(metrics_results, ["Metric", "Value"], tablefmt="grid"))

        if self.printout:
            print("Saving results to %s" % (self.printout))
            df = pd.DataFrame(evaluation_results)
            df.to_csv(self.printout, header=None, index=False)
Exemplo n.º 12
0
class TestMO_GAAL(unittest.TestCase):
    def setUp(self):
        self.n_train = 3000
        self.n_test = 1000
        self.n_features = 10
        self.contamination = 0.1
        # TODO: GAN may yield unstable results; turning performance check off
        # self.roc_floor = 0.8
        self.X_train, self.y_train, self.X_test, self.y_test = generate_data(
            n_train=self.n_train, n_test=self.n_test,
            n_features=self.n_features, contamination=self.contamination,
            random_state=42)

        self.clf = MO_GAAL(k=1, stop_epochs=2,
                           contamination=self.contamination)
        self.clf.fit(self.X_train)

    def test_parameters(self):
        assert_true(hasattr(self.clf, 'decision_scores_') and
                    self.clf.decision_scores_ is not None)
        assert_true(hasattr(self.clf, 'labels_') and
                    self.clf.labels_ is not None)
        assert_true(hasattr(self.clf, 'threshold_') and
                    self.clf.threshold_ is not None)
        assert_true(hasattr(self.clf, '_mu') and
                    self.clf._mu is not None)
        assert_true(hasattr(self.clf, '_sigma') and
                    self.clf._sigma is not None)
        assert_true(hasattr(self.clf, 'discriminator') and
                    self.clf.discriminator is not None)

    def test_train_scores(self):
        assert_equal(len(self.clf.decision_scores_), self.X_train.shape[0])

    def test_prediction_scores(self):
        pred_scores = self.clf.decision_function(self.X_test)

        # check score shapes
        assert_equal(pred_scores.shape[0], self.X_test.shape[0])

        # check performance
        # assert_greater(roc_auc_score(self.y_test, pred_scores), self.roc_floor)

    def test_prediction_labels(self):
        pred_labels = self.clf.predict(self.X_test)
        assert_equal(pred_labels.shape, self.y_test.shape)

    def test_prediction_proba(self):
        pred_proba = self.clf.predict_proba(self.X_test)
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_linear(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='linear')
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_unify(self):
        pred_proba = self.clf.predict_proba(self.X_test, method='unify')
        assert_greater_equal(pred_proba.min(), 0)
        assert_less_equal(pred_proba.max(), 1)

    def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something')

    def test_fit_predict(self):
        pred_labels = self.clf.fit_predict(self.X_train)
        assert_equal(pred_labels.shape, self.y_train.shape)

    def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test, self.y_test,
                                       scoring='something')

    def tearDown(self):
        pass
Exemplo n.º 13
0
test_date = "2020-02-16"

KNN_clf = KNN(contamination=0.05)
PCA_clf = PCA(contamination=0.05)
VAE_clf = VAE(contamination=0.05, epochs=30, encoder_neurons=[9, 4], decoder_neurons=[4, 9])
LOF_clf = LOF(contamination=0.05)
IForest_clf = IForest(contamination=0.05)
AutoEncoder_clf = AutoEncoder(contamination=0.05, epochs=30, hidden_neurons=[9, 4, 4, 9])
FeatureBagging_clf = FeatureBagging(contamination=0.05, check_estimator=False)
ABOD_clf = ABOD(contamination=0.05)
HBOS_clf = HBOS(contamination=0.05)
CBLOF_clf = CBLOF(contamination=0.05)
LODA_clf = LODA(contamination=0.05)
MCD_clf = MCD(contamination=0.05)
MO_GAAL_clf = MO_GAAL(k=3, stop_epochs=2, contamination=0.05)
SO_GAAL_clf = SO_GAAL(contamination=0.05)
KNN_MAH_clf = None

S_models = ["KNN", "LOF", "PCA", "IForest", "HBOS", "LODA", "MCD", "CBLOF", "FeatureBagging", "ABOD", "KNN_MAH"]
K_models = ["AutoEncoder", "SO_GAAL", "VAE"]

def get_train_data():
    """
    获取训练样本
    :return:    x_train 9特征训练样本
                df 原训练数据
    """
    acc_date = pd.date_range(begin, end, freq='1D')
    for day in acc_date:
        date = str(day.date())
Exemplo n.º 14
0
X = df.to_numpy()
scaler = StandardScaler()

# Representation 1 & 4
#X_scaled = scaler.fit_transform(X)

# Representation 2
# times & TFIDF: Scale times only separately
#X_times_scaled = scaler.fit_transform(X[:,:len(TIME_FIELDS)])
#X_scaled = np.hstack([X_times_scaled, X[:,len(TIME_FIELDS):]])

# Representation 3
# times & TFIDF: Scale all
# X_scaled = scaler.fit_transform(X)

# Representation 5
# times & TFIDF: Scale times only and TFIDF features separately. TFIDF vectors are made L2 norm = 1
X_times_scaled = scaler.fit_transform(X[:, :len(TIME_FIELDS) - 1])
scaler_tfidf = Normalizer()
X_tfidf = scaler_tfidf.fit_transform(X[:, len(TIME_FIELDS) - 1:])
X_scaled = np.hstack([X_times_scaled, X_tfidf])

clf = MO_GAAL(contamination=0.05)
clf.fit(X_scaled)

df_all['scores'] = clf.decision_scores_
df_all['labels'] = clf.labels_
df_out = df_all.where(df_all['labels'] == 1).dropna()
df_out = df_out.loc[:, (df_out != 0).any(axis=0)]
df_out.to_excel(os.path.join(OUT_PATH, OUT_FILE))
Exemplo n.º 15
0
def run_all_models(all_array, labels, pca, data_set_name):
    picture_name = all_array.get("# img", 1)
    all_array = all_array.drop("# img", 1)

    # standardizing data for processing
    all_array = standardizer(all_array)

    y = labels.get("in").to_numpy()
    x_train, x_test, y_train, y_test, picture_train, picture_test = train_test_split(all_array, y, picture_name,
                                                                                     test_size=0.4)

    if pca:
        transformer = IncrementalPCA()
        all_array = transformer.fit_transform(all_array)

    print("OCSVM")
    now = time()
    clf = OCSVM()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("OCSVM", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("Auto-encoder")
    now = time()
    clf = AutoEncoder(epochs=30)
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("Auto-encoder", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("HBOS")
    now = time()
    clf = HBOS()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("HBOS", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("SO_GAAL")
    now = time()
    clf = SO_GAAL()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("SO_GAAL", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("MO_GAAL")
    now = time()
    clf = MO_GAAL()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("MO_GAAL", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("MCD")
    now = time()
    clf = MCD()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("MCD", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("SOS")
    now = time()
    clf = SOS()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("SOS", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("IForest")
    now = time()
    clf = IForest()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("IFrorest", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("KNN")
    now = time()
    clf = KNN()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("KNN", all_array.shape, temp, data_set_name, time() - now, scores_train))

    print("PCA")
    now = time()
    clf = PCA()
    clf.fit(x_train)
    test_scores = clf.decision_function(x_test)
    temp = print_score(picture_test, test_scores, y_test)
    train_scores = clf.decision_function(x_train)
    scores_train = print_score(picture_train, train_scores, y_train)
    output_table.append(("PCA", all_array.shape, temp, data_set_name, time() - now, scores_train))