Exemplo n.º 1
0
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, multi_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=2048))
system.add(Gaussian("gaussian", peak_power=1.0, width=1.0))

system.run()
P_ts = [temporal_power(system.fields['gaussian'])]

fibres = [
    Fibre(length=5.0, beta=[0.0, 0.0, 0.0, 1.0], total_steps=100),
    Fibre(length=5.0, beta=[0.0, 0.0, 1.0, 1.0], total_steps=100)
]

for fibre in fibres:
    system = System(Domain(bit_width=200.0, samples_per_bit=2048))
    system.add(Gaussian(peak_power=1.0, width=1.0))
    system.add(fibre)
    system.run()
    P_ts.append(temporal_power(system.fields['fibre']))
Exemplo n.º 2
0

if __name__ == "__main__":
    """
    Plot the result of a Gaussian pulse propagating through optical fibre.
    Simulates both (third-order) dispersion and nonlinearity.
    Use five different methods: ss_simple, ss_symmetric, ss_sym_rk4,
    ss_sym_rkf, and rk4ip. Expect all five methods to produce similar results;
    plot traces should all overlap. Separate traces should only be seen at
    a high zoom level.
    """
    from pyofss import Domain, System, Gaussian, Fibre
    from pyofss import temporal_power, multi_plot, labels

    domain = Domain(bit_width=200.0, samples_per_bit=2048)
    gaussian = Gaussian(peak_power=1.0, width=1.0)

    P_ts = []
    methods = ['ss_simple', 'ss_symmetric', 'ss_sym_rk4', 'rk4ip']

    for m in methods:
        sys = System(domain)
        sys.add(gaussian)
        sys.add(
            Fibre(length=5.0,
                  method=m,
                  total_steps=50,
                  beta=[0.0, 0.0, 0.0, 1.0],
                  gamma=1.0))
        sys.run()
        P_ts.append(temporal_power(sys.field))
Exemplo n.º 3
0
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, spectral_power, double_plot, labels

domain = Domain(bit_width=4.0, samples_per_bit=4096)

s = 0.01
width = 1.0 / (s * domain.centre_omega)
gamma = 100.0 / (width ** 2)

P_ts = []
P_nus = []
length = [20.0 / gamma, 40.0 / gamma]

for l in length:
    system = System(domain)
    system.add(Gaussian(peak_power=1.0, width=width))
    system.add(Fibre(length=l, gamma=gamma, total_steps=200,
                     self_steepening=True, beta=[0.0, 0.0, 1.0]))
    system.run()

    field = system.fields['fibre']
    P_ts.append(temporal_power(field))
    P_nus.append(spectral_power(field, True))

double_plot(system.domain.t, P_ts[0], system.domain.nu, P_nus[0],
            labels["t"], labels["P_t"], labels["nu"], labels["P_nu"],
            x_range=(-0.5, 0.5), X_range=(146.1, 240.1), filename="4-21a")

double_plot(system.domain.t, P_ts[1], system.domain.nu, P_nus[1],
            labels["t"], labels["P_t"], labels["nu"], labels["P_nu"],
            x_range=(-1.0, 1.0), X_range=(146.1, 240.1), filename="4-21b")
Exemplo n.º 4
0
if __name__ == "__main__":
    # Compare simulations using Fibre and OpenclFibre modules.
    from pyofss import Domain, System, Gaussian, Fibre
    from pyofss import temporal_power, double_plot, labels

    import time

    TS = 4096
    GAMMA = 100.0
    STEPS = 800
    LENGTH = 0.1

    DOMAIN = Domain(bit_width=30.0, samples_per_bit=TS)

    SYS = System(DOMAIN)
    SYS.add(Gaussian("gaussian", peak_power=1.0, width=1.0))
    SYS.add(Fibre("fibre", beta=[0.0, 0.0, 0.0, 1.0], gamma=GAMMA,
                  length=LENGTH, total_steps=STEPS, method="RK4IP"))

    start = time.clock()
    SYS.run()
    stop = time.clock()
    NO_OCL_DURATION = (stop - start) / 1000.0
    NO_OCL_OUT = SYS.fields["fibre"]

    sys = System(DOMAIN)
    sys.add(Gaussian("gaussian", peak_power=1.0, width=1.0))
    sys.add(OpenclFibre(TS, dorf="float", length=LENGTH, total_steps=STEPS))

    start = time.clock()
    sys.run()
Exemplo n.º 5
0
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss.domain import nu_to_omega, lambda_to_nu
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

nu_0 = lambda_to_nu(1060.0)
nu_1 = lambda_to_nu(1550.0)

offset_nu = nu_0 - nu_1

system = System(Domain(bit_width=20.0, samples_per_bit=8192,
                       channels=2, centre_nu=nu_0))
system.add(Gaussian(width=1.0, peak_power=1000.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=0.1, channel=1,
                    offset_nu=-offset_nu))
system.add(Fibre('fibre', length=0.05, gamma=[0.9, 0.615483871],
           beta=[[0.0, 0.0, 1.0, 0.0], [0.0, 0.0, -1.0, 0.0]],
           centre_omega=(nu_to_omega(nu_0), nu_to_omega(nu_1)),
           sim_type='wdm', method='ARK4IP', traces=100))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z_temp) = storage.get_plot_data(channel=0)
z_label = r"Fibre length, $z \, (m)$"
z = z_temp * 1.0e3

map_plot(x, y, z, labels["t"], labels["P_t"], z_label,
         filename="7-9_map_t_pump")
Exemplo n.º 6
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

for m in [1, 3]:
    system = System(Domain(bit_width=200.0, samples_per_bit=2048))
    system.add(Gaussian(peak_power=1.0, width=1.0, m=m))
    system.add(Fibre(length=10.0, gamma=1.0, traces=50))
    system.run()

    storage = system['fibre'].stepper.storage
    (x, y, z) = storage.get_plot_data(is_temporal=False, normalised=True)

    map_plot(x,
             y,
             z,
             labels["nu"],
             labels["P_nu"],
             labels["z"],
             filename="4-4_map_m-{0:d}".format(m))

    waterfall_plot(x,
Exemplo n.º 7
0
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import numpy as np
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import spectral_power, quad_plot, labels

A_fs = []
Cs = [0.0, 10.0, -10.0, -20.0]

for C in Cs:
    system = System(Domain(bit_width=100.0, samples_per_bit=2048))
    system.add(Gaussian(width=1.0, peak_power=1.0, C=C))
    system.add(Fibre('fibre', length=1.0, gamma=4.5 * np.pi))
    system.run()
    A_fs.append(system.fields['fibre'])

P_nus = [spectral_power(A_f, True) for A_f in A_fs]

quad_plot(system.domain.nu,
          P_nus,
          Cs,
          labels["nu"],
          labels["P_nu"], ["$C = {0:.0f}$"], (189.1, 197.1),
          filename="4-5")
Exemplo n.º 8
0
        Output information on Gaussian.
        """
        output_string = [
            'position = {0:f}', 'width = {1:f} ps', 'fwhm = {2:f} ps',
            'peak_power = {3:f} W', 'offset_nu = {4:f} THz', 'm = {5:d}',
            'C = {6:f}', 'initial_phase = {7:f} rad', 'channel = {8:d}'
        ]

        return "\n".join(output_string).format(self.position, self.width,
                                               self.calculate_fwhm(),
                                               self.peak_power, self.offset_nu,
                                               self.m, self.C,
                                               self.initial_phase,
                                               self.channel)


if __name__ == "__main__":
    """ Plot a default Gaussian in temporal and spectral domain """
    from pyofss import Domain, System, Gaussian
    from pyofss import temporal_power, spectral_power
    from pyofss import double_plot, labels

    sys = System(Domain(bit_width=500.0))
    sys.add(Gaussian())
    sys.run()

    double_plot(sys.domain.t, temporal_power(sys.field), sys.domain.nu,
                spectral_power(sys.field, True), labels["t"], labels["P_t"],
                labels["nu"], labels["P_nu"])
Exemplo n.º 9
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

import sys
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import map_plot, waterfall_plot, animated_plot, labels

system = System(Domain(bit_width=400.0, samples_per_bit=2048))
system.add(Gaussian(peak_power=1.0, width=30.0))
system.add(Fibre(length=90.0, beta=[0.0, 0.0, 1.0, 0.0], gamma=1.0,
                 traces=100))
system.run()

storage = system['fibre'].stepper.storage
(x, y, z) = storage.get_plot_data(False, (192.6, 193.6), normalised=True)

map_plot(x,
         y,
         z,
         labels["nu"],
         labels["P_nu"],
         labels["z"],
         filename="4-11_map_nu")
Exemplo n.º 10
0
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian, Fibre
from pyofss import spectral_power, double_plot, labels

system = System(Domain(bit_width=200.0, samples_per_bit=4096, channels=2))
system.add(Gaussian(width=1.0, peak_power=1.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=0.5, channel=1))
system.add(
    Fibre('fibre',
          length=40.0,
          gamma=[1.0, 1.2],
          beta=[[0.0, 0.0, 0.0, 0.0], [0.0, 0.125, 0.0, 0.0]],
          sim_type='wdm',
          total_steps=400,
          method='RK4IP'))
system.run()

A_fs = system.fields['fibre']

P_nu0 = spectral_power(A_fs[0], True)
P_nu1 = spectral_power(A_fs[1], True)
Exemplo n.º 11
0
"""

from pyofss.domain import nu_to_omega
from pyofss import Domain, System, Gaussian, Fibre
from pyofss import temporal_power, double_plot, labels

domain = Domain(bit_width=20.0, samples_per_bit=8192, channels=2)

nu_0 = 193.1
nu_1 = 1.2 * nu_0

offset_nu = 0.2 * 193.1
offset = 2.5 / domain.bit_width

system = System(domain)
system.add(Gaussian(width=1.0, peak_power=1000.0, channel=0))
system.add(Gaussian(width=1.0, peak_power=0.1, channel=1,
                    position=0.5 - offset, offset_nu=offset_nu))
system.add(Fibre('fibre', length=0.2, gamma=[0.1, 0.12],
           beta=[[0.0, 0.0, 1.0, 0.0], [0.0, 10.0, 1.0, 0.0]],
           centre_omega=(nu_to_omega(nu_0), nu_to_omega(nu_1)),
           sim_type='wdm', method='ARK4IP'))
system.run()

A_fs = system.fields['fibre']

P_t0 = temporal_power(A_fs[0])
P_t1 = temporal_power(A_fs[1])

double_plot(system.domain.t, P_t0, system.domain.t, P_t1,
            labels["t"], labels["P_t"], labels["t"], labels["P_t"],
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""

from pyofss import Domain, System, Gaussian
from pyofss import phase, chirp, double_plot, labels

system = System(Domain(bit_width=10.0))
t = system.domain.t
nu = system.domain.nu
window_nu = system.domain.window_nu

system.add(Gaussian(initial_phase=3.0, width=1.0))
system.run()

double_plot(t,
            phase(system.field),
            t,
            chirp(system.field, window_nu),
            labels["t"],
            labels["phi"],
            labels["t"],
            labels["chirp"],
            filename="1 - phase_offset")

system.clear(True)
system.add(Gaussian(offset_nu=0.5, width=1.0))
system.run()