Exemplo n.º 1
0
def test_read_analogs(
    usecols,
    shape_val,
    first_last_val,
    mean_val,
    median_val,
    sum_val,
    nans_val,
    extension,
):
    if extension == "csv":
        data = Analogs.from_csv(**analogs_csv_kwargs, usecols=usecols)
        decimal = 0
    elif extension == "c3d":
        data = Analogs.from_c3d(MARKERS_ANALOGS_C3D,
                                prefix_delimiter=".",
                                usecols=usecols)
        decimal = 4
    else:
        raise ValueError("wrong extension provided")

    if usecols and isinstance(usecols[0], str):
        np.testing.assert_array_equal(x=data.channel, y=usecols)

    is_expected_array(
        data,
        shape_val,
        first_last_val,
        mean_val,
        median_val,
        sum_val,
        nans_val,
        decimal=decimal,
    )
def test_csv_trailing_columns():
    last_column_to_remove = 5
    ref = Analogs.from_csv(
        **analogs_csv_kwargs).channel[:-last_column_to_remove]
    without_last_columns = Analogs.from_csv(
        **analogs_csv_kwargs, trailing_columns=last_column_to_remove).channel
    np.testing.assert_array_equal(x=ref, y=without_last_columns)
def test_proc_filters():
    freq = ANALOGS_DATA.rate
    order = 2

    is_expected_array(
        ANALOGS_DATA.meca.low_pass(order=order, cutoff=5, freq=freq),
        **EXPECTED_VALUES[32],
    )
    is_expected_array(
        ANALOGS_DATA.meca.low_pass(order=order, cutoff=5),
        **EXPECTED_VALUES[32],
    )
    is_expected_array(
        ANALOGS_DATA.meca.high_pass(order=order, cutoff=100),
        **EXPECTED_VALUES[33],
    )
    is_expected_array(
        ANALOGS_DATA.meca.band_pass(order=order, cutoff=[10, 200]),
        **EXPECTED_VALUES[34],
    )
    is_expected_array(
        ANALOGS_DATA.meca.band_stop(order=order, cutoff=[40, 60]),
        **EXPECTED_VALUES[35],
    )

    freq = MARKERS_DATA.rate
    is_expected_array(
        MARKERS_DATA.meca.low_pass(freq=freq, order=order, cutoff=5),
        **EXPECTED_VALUES[36],
    )
    is_expected_array(
        MARKERS_DATA.meca.low_pass(order=order, cutoff=5),
        **EXPECTED_VALUES[36],
    )
    is_expected_array(
        MARKERS_DATA.meca.high_pass(order=order, cutoff=10),
        **EXPECTED_VALUES[37],
    )
    is_expected_array(
        MARKERS_DATA.meca.band_pass(order=order, cutoff=[1, 10]),
        **EXPECTED_VALUES[38],
    )
    is_expected_array(
        MARKERS_DATA.meca.band_stop(order=order, cutoff=[5, 6]),
        **EXPECTED_VALUES[39],
    )

    with pytest.raises(ValueError):
        Analogs.from_random_data().meca.band_stop(order=order, cutoff=[5, 6])
def test_analogs_creation():
    dims = ("channel", "time")
    array = Analogs()
    np.testing.assert_array_equal(x=array, y=xr.DataArray())
    assert array.dims == dims

    array = Analogs(ANALOGS_DATA.values)
    is_expected_array(array, **EXPECTED_VALUES[56])

    size = 10, 100
    array = Analogs.from_random_data(size=size)
    assert array.shape == size
    assert array.dims == dims

    with pytest.raises(ValueError):
        Analogs(MARKERS_DATA)
Exemplo n.º 5
0
def test_csv_without_header():
    is_expected_array(
        Analogs.from_csv(ANALOGS_CSV, first_row=5, first_column=2),
        **EXPECTED_VALUES[59],
    )

    is_expected_array(
        Markers.from_csv(MARKERS_CSV_WITHOUT_HEADER, first_column=2),
        **EXPECTED_VALUES[58],
    )
Exemplo n.º 6
0
def test_read_catch_error(
    usecols,
    extension,
):
    with pytest.raises(IndexError):
        Markers.from_csv(MARKERS_CSV)

    if extension == "csv":
        with pytest.raises(ValueError):
            Analogs.from_csv(**analogs_csv_kwargs, usecols=usecols)
        with pytest.raises(ValueError):
            Markers.from_csv(**markers_csv_kwargs, usecols=usecols)
    elif extension == "c3d":
        with pytest.raises(ValueError):
            Analogs.from_c3d(MARKERS_ANALOGS_C3D, usecols=usecols)

    reader = getattr(Markers, f"from_{extension}")
    with pytest.raises(ValueError):
        reader(MARKERS_ANALOGS_C3D, usecols=usecols)
Exemplo n.º 7
0
def test_read_xlsx():
    is_expected_array(
        Markers.from_excel(**{
            **markers_csv_kwargs,
            **dict(filename=MARKERS_XLSX)
        }),
        **EXPECTED_VALUES[60],
    )
    is_expected_array(
        Analogs.from_excel(**{
            **analogs_csv_kwargs,
            **dict(filename=ANALOGS_XLSX)
        }),
        **EXPECTED_VALUES[61],
    )
Exemplo n.º 8
0
def test_csv_edge_cases():
    time_with_rate = Analogs.from_csv(**analogs_csv_kwargs,
                                      attrs={
                                          "rate": 2000
                                      }).time
    assert time_with_rate[-1] == 5.7995

    time_column_with_id = Analogs.from_csv(**analogs_csv_kwargs,
                                           time_column="Frame")

    time_column_with_name = Analogs.from_csv(**analogs_csv_kwargs,
                                             time_column=0)

    np.testing.assert_array_equal(time_column_with_id.time,
                                  time_column_with_name.time)
    np.testing.assert_array_equal(time_column_with_id, time_column_with_name)

    with pytest.raises(ValueError):
        Analogs.from_csv(**analogs_csv_kwargs, time_column=[20.0])

    assert Analogs.from_csv(**analogs_csv_kwargs,
                            prefix_delimiter="G",
                            suffix_delimiter="M").shape == (38, 11600)
Exemplo n.º 9
0
MARKERS_CSV = DATA_FOLDER / "markers.csv"
MARKERS_ANALOGS_C3D = DATA_FOLDER / "markers_analogs.c3d"
ANALOGS_CSV = DATA_FOLDER / "analogs.csv"
MARKERS_CSV_WITHOUT_HEADER = DATA_FOLDER / "markers_without_header.csv"
MARKERS_XLSX = DATA_FOLDER / "markers.xlsx"
MARKERS_TRC = DATA_FOLDER / "markers.trc"
ANALOGS_XLSX = DATA_FOLDER / "analogs.xlsx"
ANALOGS_STO = DATA_FOLDER / "inverse_dyn.sto"
ANALOGS_MOT = DATA_FOLDER / "inverse_kin.mot"
EXPECTED_VALUES_CSV = DATA_FOLDER / "is_expected_array_val.csv"

MARKERS_DATA = Markers.from_c3d(
    MARKERS_ANALOGS_C3D,
    usecols=["CLAV_post", "PSISl", "STERr", "CLAV_post"],
    prefix_delimiter=":",
)
ANALOGS_DATA = Analogs.from_c3d(
    MARKERS_ANALOGS_C3D,
    usecols=["EMG1", "EMG10", "EMG11", "EMG12"],
    prefix_delimiter=".",
)

EXPECTED_VALUES = pd.read_csv(
    EXPECTED_VALUES_CSV,
    index_col=[0],
    converters={
        "shape_val": eval,
        "first_last_val": eval
    },
).to_dict("index")
# --- EMG --- #
muscles_names = [
    "pect.IM EMG7",
    "deltpost.EMG3",
    "triceps.EMG5",
    "deltant.EMG1",
    "deltmed.EMG2",
    "ssp.EMG8",
    "isp.EMG9",
    "subs.EMG10",
    "biceps.EMG4",
    "uptrap.EMG6",
]

a = Analogs.from_c3d(data_path, usecols=muscles_names)
emg_rate = int(a.rate)
emg = (
    a.meca.band_pass(order=4,
                     cutoff=[10, 425]).meca.center().meca.abs().meca.low_pass(
                         order=4, cutoff=5, freq=a.rate)
    # .meca.normalize()
)
# emg.plot(x="time", col="channel", col_wrap=3)
# plt.show()
# emg.meca.to_matlab("EMG_flex3.mat")

# --- Markers --- #
markers_full_names = [
    "XIPH", "STER", "STERback", "CLAV_SC", "CLAV_AC", "SCAP_CP", "SCAP_AA",
    "SCAP_TS", "SCAP_IA", "DELT", "ARMl", "EPICl", "EPICm", "LARM_ant",
def test_read_mot():
    is_expected_array(Analogs.from_mot(ANALOGS_MOT), **EXPECTED_VALUES[63])
def test_read_sto():
    is_expected_array(Analogs.from_sto(ANALOGS_STO), **EXPECTED_VALUES[62])
    with pytest.raises(IndexError):
        Analogs.from_sto(ANALOGS_CSV)