Exemplo n.º 1
0
    def _apply_solver(self, timer: HierarchicalTimer):
        config = self.config

        if config.time_limit is not None:
            timeout = config.time_limit + min(max(1, 0.01 * config.time_limit), 100)
        else:
            timeout = None

        ostreams = [LogStream(level=self.config.log_level, logger=self.config.solver_output_logger)]
        if self.config.stream_solver:
            ostreams.append(sys.stdout)

        cmd = [str(config.executable),
               self._filename + '.nl',
               '-AMPL',
               'option_file_name=' + self._filename + '.opt']
        if 'option_file_name' in self.solver_options:
            raise ValueError('Use Ipopt.config.filename to specify the name of the options file. '
                             'Do not use Ipopt.solver_options["option_file_name"].')
        for k, v in self.solver_options.items():
            cmd.append(str(k) + '=' + str(v))

        with TeeStream(*ostreams) as t:
            timer.start('subprocess')
            cp = subprocess.run(cmd,
                                timeout=timeout,
                                stdout=t.STDOUT,
                                stderr=t.STDERR,
                                universal_newlines=True)
            timer.stop('subprocess')

        if cp.returncode != 0:
            if self.config.load_solution:
                raise RuntimeError('A feasible solution was not found, so no solution can be loaded.'
                                   'Please set opt.config.load_solution=False and check '
                                   'results.termination_condition and '
                                   'results.best_feasible_objective before loading a solution.')
            results = Results()
            results.termination_condition = TerminationCondition.error
            results.best_feasible_objective = None
            self._primal_sol = None
            self._dual_sol = None
        else:
            timer.start('parse solution')
            results = self._parse_sol()
            timer.stop('parse solution')

        if self._writer.get_active_objective() is None:
            results.best_objective_bound = None
        else:
            if self._writer.get_active_objective().sense == minimize:
                results.best_objective_bound = -math.inf
            else:
                results.best_objective_bound = math.inf

        return results
Exemplo n.º 2
0
    def _execute_command(self, command):
        """
        Execute the command
        """

        start_time = time.time()

        if 'script' in command:
            _input = command.script
        else:
            _input = None

        timeout = self._timelimit
        if timeout is not None:
            timeout += max(1, 0.01 * self._timelimit)

        ostreams = [StringIO()]
        if self._tee:
            ostreams.append(sys.stdout)

        try:
            with TeeStream(*ostreams) as t:
                results = subprocess.run(
                    command.cmd,
                    input=_input,
                    env=command.env,
                    stdout=t.STDOUT,
                    stderr=t.STDERR,
                    timeout=timeout,
                    universal_newlines=True,
                )
                t.STDOUT.flush()
                t.STDERR.flush()

            rc = results.returncode
            log = ostreams[0].getvalue()
        except OSError:
            err = sys.exc_info()[1]
            msg = 'Could not execute the command: %s\tError message: %s'
            raise ApplicationError(msg % (command.cmd, err))
        sys.stdout.flush()

        self._last_solve_time = time.time() - start_time

        return [rc, log]
Exemplo n.º 3
0
    def solve(self, model, **kwds):
        config = self.config(kwds, preserve_implicit=True)

        if not isinstance(model, Block):
            raise ValueError("PyomoCyIpoptSolver.solve(model): model "
                             "must be a Pyomo Block")

        # If this is a Pyomo model / block, then we need to create
        # the appropriate PyomoNLP, then wrap it in a CyIpoptNLP
        grey_box_blocks = list(model.component_data_objects(
            egb.ExternalGreyBoxBlock, active=True))
        if grey_box_blocks:
            # nlp = pyomo_nlp.PyomoGreyBoxNLP(model)
            nlp = pyomo_grey_box.PyomoNLPWithGreyBoxBlocks(model)
        else:
            nlp = pyomo_nlp.PyomoNLP(model)

        problem = CyIpoptNLP(nlp, intermediate_callback=config.intermediate_callback)

        xl = problem.x_lb()
        xu = problem.x_ub()
        gl = problem.g_lb()
        gu = problem.g_ub()

        nx = len(xl)
        ng = len(gl)

        cyipopt_solver = cyipopt.Problem(
            n=nx,
            m=ng,
            problem_obj=problem,
            lb=xl,
            ub=xu,
            cl=gl,
            cu=gu
        )

        # check if we need scaling
        obj_scaling, x_scaling, g_scaling = problem.scaling_factors()
        if any(_ is not None for _ in (obj_scaling, x_scaling, g_scaling)):
            # need to set scaling factors
            if obj_scaling is None:
                obj_scaling = 1.0
            if x_scaling is None:
                x_scaling = np.ones(nx)
            if g_scaling is None:
                g_scaling = np.ones(ng)
            try:
                set_scaling = cyipopt_solver.set_problem_scaling
            except AttributeError:
                # Fall back to pre-1.0.0 API
                set_scaling = cyipopt_solver.setProblemScaling
            set_scaling(obj_scaling, x_scaling, g_scaling)

        # add options
        try:
            add_option = cyipopt_solver.add_option
        except AttributeError:
            # Fall back to pre-1.0.0 API
            add_option = cyipopt_solver.addOption
        for k, v in config.options.items():
            add_option(k, v)

        timer = TicTocTimer()
        try:
            # We preemptively set up the TeeStream, even if we aren't
            # going to use it: the implementation is such that the
            # context manager does nothing (i.e., doesn't start up any
            # processing threads) until afer a client accesses
            # STDOUT/STDERR
            with TeeStream(sys.stdout) as _teeStream:
                if config.tee:
                    try:
                        fd = sys.stdout.fileno()
                    except (io.UnsupportedOperation, AttributeError):
                        # If sys,stdout doesn't have a valid fileno,
                        # then create one using the TeeStream
                        fd = _teeStream.STDOUT.fileno()
                else:
                    fd = None
                with redirect_fd(fd=1, output=fd, synchronize=False):
                    x, info = cyipopt_solver.solve(problem.x_init())
            solverStatus = SolverStatus.ok
        except:
            msg = "Exception encountered during cyipopt solve:"
            logger.error(msg, exc_info=sys.exc_info())
            solverStatus = SolverStatus.unknown
            raise

        wall_time = timer.toc(None)

        results = SolverResults()

        if config.load_solutions:
            nlp.set_primals(x)
            nlp.set_duals(info['mult_g'])
            nlp.load_state_into_pyomo(
                bound_multipliers=(info['mult_x_L'], info['mult_x_U']))
        else:
            soln = results.solution.add()
            soln.variable.update(
                (i, {'Value':j, 'ipopt_zL_out': zl, 'ipopt_zU_out': zu})
                for i,j,zl,zu in zip( nlp.variable_names(),
                                      x,
                                      info['mult_x_L'],
                                      info['mult_x_U'] )
            )
            soln.constraint.update(
                (i, {'Dual':j}) for i,j in zip(
                    nlp.constraint_names(), info['mult_g']))


        results.problem.name = model.name
        obj = next(model.component_data_objects(Objective, active=True))
        if obj.sense == minimize:
            results.problem.sense = ProblemSense.minimize
            results.problem.upper_bound = info['obj_val']
        else:
            results.problem.sense = ProblemSense.maximize
            results.problem.lower_bound = info['obj_val']
        results.problem.number_of_objectives = 1
        results.problem.number_of_constraints = ng
        results.problem.number_of_variables = nx
        results.problem.number_of_binary_variables = 0
        results.problem.number_of_integer_variables = 0
        results.problem.number_of_continuous_variables = nx
        # TODO: results.problem.number_of_nonzeros

        results.solver.name = 'cyipopt'
        results.solver.return_code = info['status']
        results.solver.message = info['status_msg']
        results.solver.wallclock_time = wall_time
        status_enum = _cyipopt_status_enum[info['status_msg']]
        results.solver.termination_condition = _ipopt_term_cond[status_enum]
        results.solver.status = TerminationCondition.to_solver_status(
            results.solver.termination_condition)

        if config.return_nlp:
            return results, nlp

        return results
Exemplo n.º 4
0
    def solve(self, x0=None, tee=False):
        xl = self._problem.x_lb()
        xu = self._problem.x_ub()
        gl = self._problem.g_lb()
        gu = self._problem.g_ub()

        if x0 is None:
            x0 = self._problem.x_init()
        xstart = x0

        nx = len(xstart)
        ng = len(gl)

        cyipopt_solver = cyipopt.Problem(
            n=nx,
            m=ng,
            problem_obj=self._problem,
            lb=xl,
            ub=xu,
            cl=gl,
            cu=gu
        )

        # check if we need scaling
        obj_scaling, x_scaling, g_scaling = self._problem.scaling_factors()
        if any(_ is not None for _ in (obj_scaling, x_scaling, g_scaling)):
            # need to set scaling factors
            if obj_scaling is None:
                obj_scaling = 1.0
            if x_scaling is None:
                x_scaling = np.ones(nx)
            if g_scaling is None:
                g_scaling = np.ones(ng)
            try:
                set_scaling = cyipopt_solver.set_problem_scaling
            except AttributeError:
                # Fall back to pre-1.0.0 API
                set_scaling = cyipopt_solver.setProblemScaling
            set_scaling(obj_scaling, x_scaling, g_scaling)

        # add options
        try:
            add_option = cyipopt_solver.add_option
        except AttributeError:
            # Fall back to pre-1.0.0 API
            add_option = cyipopt_solver.addOption
        for k, v in self._options.items():
            add_option(k, v)

        # We preemptively set up the TeeStream, even if we aren't
        # going to use it: the implementation is such that the
        # context manager does nothing (i.e., doesn't start up any
        # processing threads) until afer a client accesses
        # STDOUT/STDERR
        with TeeStream(sys.stdout) as _teeStream:
            if tee:
                try:
                    fd = sys.stdout.fileno()
                except (io.UnsupportedOperation, AttributeError):
                    # If sys,stdout doesn't have a valid fileno,
                    # then create one using the TeeStream
                    fd = _teeStream.STDOUT.fileno()
            else:
                fd = None
            with redirect_fd(fd=1, output=fd, synchronize=False):
                x, info = cyipopt_solver.solve(xstart)

        return x, info
Exemplo n.º 5
0
    def _apply_solver(self, timer: HierarchicalTimer):
        config = self.config

        if config.time_limit is not None:
            timeout = config.time_limit + min(max(1, 0.01 * config.time_limit), 100)
        else:
            timeout = None

        def _check_and_escape_options():
            for key, val in self.solver_options.items():
                tmp_k = str(key)
                _bad = ' ' in tmp_k

                tmp_v = str(val)
                if ' ' in tmp_v:
                    if '"' in tmp_v:
                        if "'" in tmp_v:
                            _bad = True
                        else:
                            tmp_v = "'" + tmp_v + "'"
                    else:
                        tmp_v = '"' + tmp_v + '"'

                if _bad:
                    raise ValueError("Unable to properly escape solver option:"
                                     "\n\t%s=%s" % (key, val) )
                yield tmp_k, tmp_v

        cmd = [str(config.executable)]
        action_options = list()
        if config.time_limit is not None:
            cmd.extend(['-sec', str(config.time_limit)])
            cmd.extend(['-timeMode', 'elapsed'])
        for key, val in _check_and_escape_options():
            if val.strip() != '':
                cmd.append('-'+key, val)
            else:
                action_options.append('-'+key)
        cmd.extend(['-printingOptions', 'all'])
        cmd.extend(['-import', self._filename + '.lp'])
        cmd.extend(action_options)
        cmd.extend(['-stat=1'])
        cmd.extend(['-solve'])
        cmd.extend(['-solu', self._filename + '.soln'])

        ostreams = [LogStream(level=self.config.log_level, logger=self.config.solver_output_logger)]
        if self.config.stream_solver:
            ostreams.append(sys.stdout)

        with TeeStream(*ostreams) as t:
            timer.start('subprocess')
            cp = subprocess.run(cmd,
                                timeout=timeout,
                                stdout=t.STDOUT,
                                stderr=t.STDERR,
                                universal_newlines=True)
            timer.stop('subprocess')

        if cp.returncode != 0:
            if self.config.load_solution:
                raise RuntimeError('A feasible solution was not found, so no solution can be loaded.'
                                   'Please set opt.config.load_solution=False and check '
                                   'results.termination_condition and '
                                   'results.best_feasible_objective before loading a solution.')
            results = Results()
            results.termination_condition = TerminationCondition.error
            results.best_feasible_objective = None
            self._primal_sol = None
            self._dual_sol = None
            self._reduced_costs = None
        else:
            timer.start('parse solution')
            results = self._parse_soln()
            timer.stop('parse solution')

        if self._writer.get_active_objective() is None:
            results.best_feasible_objective = None
            results.best_objective_bound = None
        else:
            if self._writer.get_active_objective().sense == minimize:
                results.best_objective_bound = -math.inf
            else:
                results.best_objective_bound = math.inf

        return results
Exemplo n.º 6
0
    def _call_alamo(self):
        """
        Method to call ALAMO executable from Python, passing the current .alm
        file as an argument.

        Args:
            None

        Returns:
            ALAMO: return code
            log: string of the text output from ALAMO
        """
        if alamo.executable is None:
            raise FileNotFoundError(
                "Could not find ALAMO executable. Please ensure that ALAMO "
                "is installed and in the system path, or provide a path to "
                "the executable.")

        ostreams = [StringIO(), sys.stdout]

        if self._temp_context is None:
            self._get_files()

        # Set working directory
        cwd = os.getcwd()
        os.chdir(self._wrkdir)

        try:
            # Add lst file to temp file manager
            lstfname = os.path.splitext(
                os.path.basename(self._almfile))[0] + ".lst"
            lstpath = os.path.join(cwd, lstfname)
            self._temp_context.add_tempfile(lstpath, exists=False)

            with TeeStream(*ostreams) as t:
                results = subprocess.run(
                    [alamo.executable, str(self._almfile)],
                    stdout=t.STDOUT,
                    stderr=t.STDERR,
                    universal_newlines=True,
                )

                t.STDOUT.flush()
                t.STDERR.flush()

            return_code = results.returncode
            alamo_log = ostreams[0].getvalue()

        except OSError:
            _log.error(
                f'Could not execute the command: alamo {str(self._almfile)}. ',
                f'Error message: {sys.exc_info()[1]}.')
            raise

        finally:
            # Revert cwd to where it started
            os.chdir(cwd)

        if "ALAMO terminated with termination code " in alamo_log:
            self._remove_temp_files()
            _log.warn("ALAMO executable returned non-zero return code. Check "
                      "the ALAMO output for more information.")

        return return_code, alamo_log