Exemplo n.º 1
0
    def test_handle_termination_condition(self):
        """Test the outer approximation decomposition algorithm."""
        model = SimpleMINLP()
        config = _get_MindtPy_config()
        solve_data = set_up_solve_data(model, config)
        with time_code(solve_data.timing, 'total', is_main_timer=True), \
                create_utility_block(solve_data.working_model, 'MindtPy_utils', solve_data):

            MindtPy = solve_data.working_model.MindtPy_utils

            MindtPy = solve_data.working_model.MindtPy_utils
            setup_results_object(solve_data, config)
            process_objective(
                solve_data,
                config,
                move_linear_objective=(config.init_strategy == 'FP' or
                                       config.add_regularization is not None),
                use_mcpp=config.use_mcpp,
                updata_var_con_list=config.add_regularization is None)
            feas = MindtPy.feas_opt = Block()
            feas.deactivate()
            feas.feas_constraints = ConstraintList(
                doc='Feasibility Problem Constraints')

            lin = MindtPy.cuts = Block()
            lin.deactivate()

            if config.feasibility_norm == 'L1' or config.feasibility_norm == 'L2':
                feas.nl_constraint_set = RangeSet(
                    len(MindtPy.nonlinear_constraint_list),
                    doc='Integer index set over the nonlinear constraints.')
                # Create slack variables for feasibility problem
                feas.slack_var = Var(feas.nl_constraint_set,
                                     domain=NonNegativeReals,
                                     initialize=1)
            else:
                feas.slack_var = Var(domain=NonNegativeReals, initialize=1)

            # no-good cuts exclude particular discrete decisions
            lin.no_good_cuts = ConstraintList(doc='no-good cuts')

            fixed_nlp = solve_data.working_model.clone()
            TransformationFactory('core.fix_integer_vars').apply_to(fixed_nlp)

            MindtPy_initialize_main(solve_data, config)

            # test handle_subproblem_other_termination
            termination_condition = tc.maxIterations
            config.add_no_good_cuts = True
            handle_subproblem_other_termination(fixed_nlp,
                                                termination_condition,
                                                solve_data, config)
            self.assertEqual(
                len(solve_data.mip.MindtPy_utils.cuts.no_good_cuts), 1)

            # test handle_main_other_conditions
            main_mip, main_mip_results = solve_main(solve_data, config)
            main_mip_results.solver.termination_condition = tc.infeasible
            handle_main_other_conditions(solve_data.mip, main_mip_results,
                                         solve_data, config)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.feasible)

            main_mip_results.solver.termination_condition = tc.unbounded
            handle_main_other_conditions(solve_data.mip, main_mip_results,
                                         solve_data, config)
            self.assertIn(main_mip.MindtPy_utils.objective_bound,
                          main_mip.component_data_objects(ctype=Constraint))

            main_mip.MindtPy_utils.del_component('objective_bound')
            main_mip_results.solver.termination_condition = tc.infeasibleOrUnbounded
            handle_main_other_conditions(solve_data.mip, main_mip_results,
                                         solve_data, config)
            self.assertIn(main_mip.MindtPy_utils.objective_bound,
                          main_mip.component_data_objects(ctype=Constraint))

            main_mip_results.solver.termination_condition = tc.maxTimeLimit
            handle_main_other_conditions(solve_data.mip, main_mip_results,
                                         solve_data, config)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.maxTimeLimit)

            main_mip_results.solver.termination_condition = tc.other
            main_mip_results.solution.status = SolutionStatus.feasible
            handle_main_other_conditions(solve_data.mip, main_mip_results,
                                         solve_data, config)
            for v1, v2 in zip(
                    main_mip.MindtPy_utils.variable_list,
                    solve_data.working_model.MindtPy_utils.variable_list):
                self.assertEqual(v1.value, v2.value)

            # test handle_feasibility_subproblem_tc
            feas_subproblem = solve_data.working_model.clone()
            add_feas_slacks(feas_subproblem, config)
            MindtPy = feas_subproblem.MindtPy_utils
            MindtPy.feas_opt.activate()
            if config.feasibility_norm == 'L1':
                MindtPy.feas_obj = Objective(expr=sum(
                    s for s in MindtPy.feas_opt.slack_var[...]),
                                             sense=minimize)
            elif config.feasibility_norm == 'L2':
                MindtPy.feas_obj = Objective(expr=sum(
                    s * s for s in MindtPy.feas_opt.slack_var[...]),
                                             sense=minimize)
            else:
                MindtPy.feas_obj = Objective(expr=MindtPy.feas_opt.slack_var,
                                             sense=minimize)

            handle_feasibility_subproblem_tc(tc.optimal, MindtPy, solve_data,
                                             config)
            handle_feasibility_subproblem_tc(tc.infeasible, MindtPy,
                                             solve_data, config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.status, SolverStatus.error)

            solve_data.should_terminate = False
            solve_data.results.solver.status = None
            handle_feasibility_subproblem_tc(tc.maxIterations, MindtPy,
                                             solve_data, config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.status, SolverStatus.error)

            solve_data.should_terminate = False
            solve_data.results.solver.status = None
            handle_feasibility_subproblem_tc(tc.solverFailure, MindtPy,
                                             solve_data, config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.status, SolverStatus.error)

            # test NLP subproblem infeasible
            solve_data.working_model.Y[1].value = 0
            solve_data.working_model.Y[2].value = 0
            solve_data.working_model.Y[3].value = 0
            fixed_nlp, fixed_nlp_results = solve_subproblem(solve_data, config)
            solve_data.working_model.Y[1].value = None
            solve_data.working_model.Y[2].value = None
            solve_data.working_model.Y[3].value = None

            # test handle_nlp_subproblem_tc
            fixed_nlp_results.solver.termination_condition = tc.maxTimeLimit
            handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_results, solve_data,
                                     config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.maxTimeLimit)

            fixed_nlp_results.solver.termination_condition = tc.maxEvaluations
            handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_results, solve_data,
                                     config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.maxEvaluations)

            fixed_nlp_results.solver.termination_condition = tc.maxIterations
            handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_results, solve_data,
                                     config)
            self.assertIs(solve_data.should_terminate, True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.maxEvaluations)

            # test handle_fp_main_tc
            config.init_strategy = 'FP'
            solve_data.fp_iter = 1
            init_rNLP(solve_data, config)
            feas_main, feas_main_results = solve_main(solve_data,
                                                      config,
                                                      fp=True)
            feas_main_results.solver.termination_condition = tc.optimal
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, False)

            feas_main_results.solver.termination_condition = tc.maxTimeLimit
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.maxTimeLimit)

            feas_main_results.solver.termination_condition = tc.infeasible
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, True)

            feas_main_results.solver.termination_condition = tc.unbounded
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, True)

            feas_main_results.solver.termination_condition = tc.other
            feas_main_results.solution.status = SolutionStatus.feasible
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, False)

            feas_main_results.solver.termination_condition = tc.solverFailure
            fp_should_terminate = handle_fp_main_tc(feas_main_results,
                                                    solve_data, config)
            self.assertIs(fp_should_terminate, True)

            # test generate_norm_constraint
            fp_nlp = solve_data.working_model.clone()
            config.fp_main_norm = 'L1'
            generate_norm_constraint(fp_nlp, solve_data, config)
            self.assertIsNotNone(
                fp_nlp.MindtPy_utils.find_component('L1_norm_constraint'))

            config.fp_main_norm = 'L2'
            generate_norm_constraint(fp_nlp, solve_data, config)
            self.assertIsNotNone(fp_nlp.find_component('norm_constraint'))

            fp_nlp.del_component('norm_constraint')
            config.fp_main_norm = 'L_infinity'
            generate_norm_constraint(fp_nlp, solve_data, config)
            self.assertIsNotNone(fp_nlp.find_component('norm_constraint'))

            # test set_solver_options
            config.mip_solver = 'gams'
            config.threads = 1
            opt = SolverFactory(config.mip_solver)
            set_solver_options(opt,
                               solve_data,
                               config,
                               'mip',
                               regularization=False)

            config.mip_solver = 'gurobi'
            config.mip_regularization_solver = 'gurobi'
            config.regularization_mip_threads = 1
            opt = SolverFactory(config.mip_solver)
            set_solver_options(opt,
                               solve_data,
                               config,
                               'mip',
                               regularization=True)

            config.nlp_solver = 'gams'
            config.nlp_solver_args['solver'] = 'ipopt'
            set_solver_options(opt,
                               solve_data,
                               config,
                               'nlp',
                               regularization=False)

            config.nlp_solver_args['solver'] = 'ipopth'
            set_solver_options(opt,
                               solve_data,
                               config,
                               'nlp',
                               regularization=False)

            config.nlp_solver_args['solver'] = 'conopt'
            set_solver_options(opt,
                               solve_data,
                               config,
                               'nlp',
                               regularization=False)

            config.nlp_solver_args['solver'] = 'msnlp'
            set_solver_options(opt,
                               solve_data,
                               config,
                               'nlp',
                               regularization=False)

            config.nlp_solver_args['solver'] = 'baron'
            set_solver_options(opt,
                               solve_data,
                               config,
                               'nlp',
                               regularization=False)

            # test algorithm_should_terminate
            solve_data.should_terminate = True
            solve_data.UB = float('inf')
            self.assertIs(
                algorithm_should_terminate(solve_data,
                                           config,
                                           check_cycling=False), True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.noSolution)

            solve_data.UB = 100
            self.assertIs(
                algorithm_should_terminate(solve_data,
                                           config,
                                           check_cycling=False), True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.feasible)

            solve_data.objective_sense = maximize
            solve_data.LB = float('-inf')
            self.assertIs(
                algorithm_should_terminate(solve_data,
                                           config,
                                           check_cycling=False), True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.noSolution)

            solve_data.LB = 100
            self.assertIs(
                algorithm_should_terminate(solve_data,
                                           config,
                                           check_cycling=False), True)
            self.assertIs(solve_data.results.solver.termination_condition,
                          tc.feasible)
Exemplo n.º 2
0
def MindtPy_iteration_loop(solve_data, config):
    """
    Main loop for MindtPy Algorithms

    This is the outermost function for the algorithms in this package; this function controls the progression of
    solving the model.

    Parameters
    ----------
    solve_data: MindtPy Data Container
        data container that holds solve-instance data
    config: ConfigBlock
        contains the specific configurations for the algorithm
    """
    last_iter_cuts = False
    while solve_data.mip_iter < config.iteration_limit:

        config.logger.info('---MindtPy main Iteration %s---' %
                           (solve_data.mip_iter + 1))

        solve_data.mip_subiter = 0
        # solve MILP main problem
        if config.strategy in {'OA', 'GOA', 'ECP'}:
            main_mip, main_mip_results = solve_main(solve_data, config)
            if main_mip_results is not None:
                if not config.single_tree:
                    if main_mip_results.solver.termination_condition is tc.optimal:
                        handle_main_optimal(main_mip, solve_data, config)
                    elif main_mip_results.solver.termination_condition is tc.infeasible:
                        handle_main_infeasible(main_mip, solve_data, config)
                        last_iter_cuts = True
                        break
                    else:
                        handle_main_other_conditions(main_mip,
                                                     main_mip_results,
                                                     solve_data, config)
                    # Call the MILP post-solve callback
                    with time_code(solve_data.timing, 'Call after main solve'):
                        config.call_after_main_solve(main_mip, solve_data)
            else:
                config.logger.info('Algorithm should terminate here.')
                break
        else:
            raise NotImplementedError()

        # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None and not config.single_tree:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if (solve_data.objective_sense == minimize and solve_data.LB !=
                    float('-inf')) or (solve_data.objective_sense == maximize
                                       and solve_data.UB != float('inf')):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(main_mip, main_mip_results,
                                              solve_data, config)
        if config.add_regularization is not None and config.single_tree:
            solve_data.curr_int_sol = get_integer_solution(solve_data.mip,
                                                           string_zero=True)
            copy_var_list_values(
                main_mip.MindtPy_utils.variable_list,
                solve_data.working_model.MindtPy_utils.variable_list, config)
            if solve_data.curr_int_sol not in set(solve_data.integer_list):
                fixed_nlp, fixed_nlp_result = solve_subproblem(
                    solve_data, config)
                handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result,
                                         solve_data, config)

        if algorithm_should_terminate(solve_data, config, check_cycling=True):
            last_iter_cuts = False
            break

        if not config.single_tree and config.strategy != 'ECP':  # if we don't use lazy callback, i.e. LP_NLP
            # Solve NLP subproblem
            # The constraint linearization happens in the handlers
            fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)
            handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result, solve_data,
                                     config)

            # Call the NLP post-solve callback
            with time_code(solve_data.timing, 'Call after subproblem solve'):
                config.call_after_subproblem_solve(fixed_nlp, solve_data)

        if algorithm_should_terminate(solve_data, config, check_cycling=False):
            last_iter_cuts = True
            break

        if config.strategy == 'ECP':
            add_ecp_cuts(solve_data.mip, solve_data, config)

        # if config.strategy == 'PSC':
        #     # If the hybrid algorithm is not making progress, switch to OA.
        #     progress_required = 1E-6
        #     if solve_data.objective_sense == minimize:
        #         log = solve_data.LB_progress
        #         sign_adjust = 1
        #     else:
        #         log = solve_data.UB_progress
        #         sign_adjust = -1
        #     # Maximum number of iterations in which the lower (optimistic)
        #     # bound does not improve before switching to OA
        #     max_nonimprove_iter = 5
        #     making_progress = True
        #     # TODO-romeo Unneccesary for OA and ROA, right?
        #     for i in range(1, max_nonimprove_iter + 1):
        #         try:
        #             if (sign_adjust * log[-i]
        #                     <= (log[-i - 1] + progress_required)
        #                     * sign_adjust):
        #                 making_progress = False
        #             else:
        #                 making_progress = True
        #                 break
        #         except IndexError:
        #             # Not enough history yet, keep going.
        #             making_progress = True
        #             break
        #     if not making_progress and (
        #             config.strategy == 'hPSC' or
        #             config.strategy == 'PSC'):
        #         config.logger.info(
        #             'Not making enough progress for {} iterations. '
        #             'Switching to OA.'.format(max_nonimprove_iter))
        #         config.strategy = 'OA'

    # if add_no_good_cuts is True, the bound obtained in the last iteration is no reliable.
    # we correct it after the iteration.
    if (
            config.add_no_good_cuts or config.use_tabu_list
    ) and config.strategy != 'FP' and not solve_data.should_terminate and config.add_regularization is None:
        bound_fix(solve_data, config, last_iter_cuts)
Exemplo n.º 3
0
def LazyOACallback_gurobi(cb_m, cb_opt, cb_where, solve_data, config):
    """This is a GUROBI callback function defined for LP/NLP based B&B algorithm.

    Parameters
    ----------
    cb_m : Pyomo model
        The MIP main problem.
    cb_opt : SolverFactory
        The gurobi_persistent solver.
    cb_where : int
        An enum member of gurobipy.GRB.Callback.
    solve_data : MindtPySolveData
        Data container that holds solve-instance data.
    config : ConfigBlock
        The specific configurations for MindtPy.
    """
    if cb_where == gurobipy.GRB.Callback.MIPSOL:
        # gurobipy.GRB.Callback.MIPSOL means that an integer solution is found during the branch and bound process
        if solve_data.should_terminate:
            cb_opt._solver_model.terminate()
            return
        cb_opt.cbGetSolution(vars=cb_m.MindtPy_utils.variable_list)
        handle_lazy_main_feasible_solution_gurobi(cb_m, cb_opt, solve_data,
                                                  config)

        if config.add_cuts_at_incumbent:
            if config.strategy == 'OA':
                add_oa_cuts(solve_data.mip, None, solve_data, config, cb_opt)

        # # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if not solve_data.bound_improved and not solve_data.solution_improved:
                config.logger.debug(
                    'the bound and the best found solution have neither been improved.'
                    'We will skip solving the regularization problem and the Fixed-NLP subproblem'
                )
                solve_data.solution_improved = False
                return
            if ((solve_data.objective_sense == minimize
                 and solve_data.LB != float('-inf'))
                    or (solve_data.objective_sense == maximize
                        and solve_data.UB != float('inf'))):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                handle_regularization_main_tc(main_mip, main_mip_results,
                                              solve_data, config)

        if solve_data.LB + config.bound_tolerance >= solve_data.UB:
            config.logger.info('MindtPy exiting on bound convergence. '
                               'LB: {} + (tol {}) >= UB: {}\n'.format(
                                   solve_data.LB, config.bound_tolerance,
                                   solve_data.UB))
            solve_data.results.solver.termination_condition = tc.optimal
            cb_opt._solver_model.terminate()
            return

        # # check if the same integer combination is obtained.
        solve_data.curr_int_sol = get_integer_solution(
            solve_data.working_model, string_zero=True)

        if solve_data.curr_int_sol in set(solve_data.integer_list):
            config.logger.debug(
                'This integer combination has been explored. '
                'We will skip solving the Fixed-NLP subproblem.')
            solve_data.solution_improved = False
            if config.strategy == 'GOA':
                if config.add_no_good_cuts:
                    var_values = list(
                        v.value for v in
                        solve_data.working_model.MindtPy_utils.variable_list)
                    add_no_good_cuts(var_values, solve_data, config)
                return
            elif config.strategy == 'OA':
                return
        else:
            solve_data.integer_list.append(solve_data.curr_int_sol)

        # solve subproblem
        # The constraint linearization happens in the handlers
        fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)

        handle_nlp_subproblem_tc(fixed_nlp, fixed_nlp_result, solve_data,
                                 config, cb_opt)
Exemplo n.º 4
0
    def __call__(self):
        """This is an inherent function in LazyConstraintCallback in cplex.

        This function is called whenever an integer solution is found during the branch and bound process.
        """
        solve_data = self.solve_data
        config = self.config
        opt = self.opt
        main_mip = self.main_mip

        if solve_data.should_terminate:
            self.abort()
            return

        self.handle_lazy_main_feasible_solution(main_mip, solve_data, config,
                                                opt)

        if config.add_cuts_at_incumbent:
            self.copy_lazy_var_list_values(
                opt, main_mip.MindtPy_utils.variable_list,
                solve_data.mip.MindtPy_utils.variable_list, config)
            if config.strategy == 'OA':
                self.add_lazy_oa_cuts(solve_data.mip, None, solve_data, config,
                                      opt)

        # regularization is activated after the first feasible solution is found.
        if config.add_regularization is not None and solve_data.best_solution_found is not None:
            # the main problem might be unbounded, regularization is activated only when a valid bound is provided.
            if not solve_data.bound_improved and not solve_data.solution_improved:
                config.logger.debug(
                    'the bound and the best found solution have neither been improved.'
                    'We will skip solving the regularization problem and the Fixed-NLP subproblem'
                )
                solve_data.solution_improved = False
                return
            if ((solve_data.objective_sense == minimize
                 and solve_data.LB != float('-inf'))
                    or (solve_data.objective_sense == maximize
                        and solve_data.UB != float('inf'))):
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                self.handle_lazy_regularization_problem(
                    main_mip, main_mip_results, solve_data, config)

        if solve_data.LB + config.bound_tolerance >= solve_data.UB:
            config.logger.info('MindtPy exiting on bound convergence. '
                               'LB: {} + (tol {}) >= UB: {}\n'.format(
                                   solve_data.LB, config.bound_tolerance,
                                   solve_data.UB))
            solve_data.results.solver.termination_condition = tc.optimal
            self.abort()
            return

        # check if the same integer combination is obtained.
        solve_data.curr_int_sol = get_integer_solution(
            solve_data.working_model, string_zero=True)

        if solve_data.curr_int_sol in set(solve_data.integer_list):
            config.logger.debug(
                'This integer combination has been explored. '
                'We will skip solving the Fixed-NLP subproblem.')
            solve_data.solution_improved = False
            if config.strategy == 'GOA':
                if config.add_no_good_cuts:
                    var_values = list(
                        v.value for v in
                        solve_data.working_model.MindtPy_utils.variable_list)
                    self.add_lazy_no_good_cuts(var_values, solve_data, config,
                                               opt)
                return
            elif config.strategy == 'OA':
                return
        else:
            solve_data.integer_list.append(solve_data.curr_int_sol)

        # solve subproblem
        # The constraint linearization happens in the handlers
        fixed_nlp, fixed_nlp_result = solve_subproblem(solve_data, config)

        # add oa cuts
        if fixed_nlp_result.solver.termination_condition in {
                tc.optimal, tc.locallyOptimal, tc.feasible
        }:
            self.handle_lazy_subproblem_optimal(fixed_nlp, solve_data, config,
                                                opt)
            if solve_data.LB + config.bound_tolerance >= solve_data.UB:
                config.logger.info('MindtPy exiting on bound convergence. '
                                   'LB: {} + (tol {}) >= UB: {}\n'.format(
                                       solve_data.LB, config.bound_tolerance,
                                       solve_data.UB))
                solve_data.results.solver.termination_condition = tc.optimal
                return
        elif fixed_nlp_result.solver.termination_condition in {
                tc.infeasible, tc.noSolution
        }:
            self.handle_lazy_subproblem_infeasible(fixed_nlp, solve_data,
                                                   config, opt)
        else:
            self.handle_lazy_subproblem_other_termination(
                fixed_nlp, fixed_nlp_result.solver.termination_condition,
                solve_data, config)
Exemplo n.º 5
0
    def handle_lazy_regularization_problem(self, main_mip, main_mip_results,
                                           solve_data, config):
        """Handles the termination condition of the regularization main problem in RLP/NLP.

        Parameters
        ----------
        main_mip : Pyomo model
            The MIP main problem.
        main_mip_results : SolverResults
            Results from solving the regularization MIP problem.
        solve_data : MindtPySolveData
            Data container that holds solve-instance data.
        config : ConfigBlock
            The specific configurations for MindtPy.

        Raises
        ------
        ValueError
            MindtPy unable to handle the termination condition of the regularization problem.
        ValueError
            MindtPy unable to handle the termination condition of the regularization problem.
        """
        if main_mip_results.solver.termination_condition in {
                tc.optimal, tc.feasible
        }:
            handle_main_optimal(main_mip,
                                solve_data,
                                config,
                                update_bound=False)
        elif main_mip_results.solver.termination_condition in {
                tc.infeasible, tc.infeasibleOrUnbounded
        }:
            config.logger.info(
                solve_data.log_note_formatter.format(
                    solve_data.mip_iter,
                    'Reg ' + solve_data.regularization_mip_type, 'infeasible'))
            if config.reduce_level_coef:
                config.level_coef = config.level_coef / 2
                main_mip, main_mip_results = solve_main(
                    solve_data, config, regularization_problem=True)
                if main_mip_results.solver.termination_condition in {
                        tc.optimal, tc.feasible
                }:
                    handle_main_optimal(main_mip,
                                        solve_data,
                                        config,
                                        update_bound=False)
                elif main_mip_results.solver.termination_condition is tc.infeasible:
                    config.logger.info(
                        'regularization problem still infeasible with reduced level_coef. '
                        'NLP subproblem is generated based on the incumbent solution of the main problem.'
                    )
                elif main_mip_results.solver.termination_condition is tc.maxTimeLimit:
                    config.logger.info(
                        'Regularization problem failed to converge within the time limit.'
                    )
                    solve_data.results.solver.termination_condition = tc.maxTimeLimit
                elif main_mip_results.solver.termination_condition is tc.unbounded:
                    config.logger.info(
                        'Regularization problem ubounded.'
                        'Sometimes solving MIQP using cplex, unbounded means infeasible.'
                    )
                elif main_mip_results.solver.termination_condition is tc.unknown:
                    config.logger.info(
                        'Termination condition of the regularization problem is unknown.'
                    )
                    if main_mip_results.problem.lower_bound != float('-inf'):
                        config.logger.info('Solution limit has been reached.')
                        handle_main_optimal(main_mip,
                                            solve_data,
                                            config,
                                            update_bound=False)
                    else:
                        config.logger.info(
                            'No solution obtained from the regularization subproblem.'
                            'Please set mip_solver_tee to True for more informations.'
                            'The solution of the OA main problem will be adopted.'
                        )
                else:
                    raise ValueError(
                        'MindtPy unable to handle regularization problem termination condition '
                        'of %s. Solver message: %s' %
                        (main_mip_results.solver.termination_condition,
                         main_mip_results.solver.message))
            elif config.use_bb_tree_incumbent:
                config.logger.debug(
                    'Fixed subproblem will be generated based on the incumbent solution of the main problem.'
                )
        elif main_mip_results.solver.termination_condition is tc.maxTimeLimit:
            config.logger.info(
                'Regularization problem failed to converge within the time limit.'
            )
            solve_data.results.solver.termination_condition = tc.maxTimeLimit
        elif main_mip_results.solver.termination_condition is tc.unbounded:
            config.logger.info(
                'Regularization problem ubounded.'
                'Sometimes solving MIQP using cplex, unbounded means infeasible.'
            )
        elif main_mip_results.solver.termination_condition is tc.unknown:
            config.logger.info(
                'Termination condition of the regularization problem is unknown.'
            )
            if main_mip_results.problem.lower_bound != float('-inf'):
                config.logger.info('Solution limit has been reached.')
                handle_main_optimal(main_mip,
                                    solve_data,
                                    config,
                                    update_bound=False)
        else:
            raise ValueError(
                'MindtPy unable to handle regularization problem termination condition '
                'of %s. Solver message: %s' %
                (main_mip_results.solver.termination_condition,
                 main_mip_results.solver.message))
Exemplo n.º 6
0
def fp_loop(solve_data, config):
    """Feasibility pump loop.

    This is the outermost function for the algorithms in this package; this function
    controls the progression of solving the model.

    Parameters
    ----------
    solve_data : MindtPySolveData
        Data container that holds solve-instance data.
    config : ConfigBlock
        The specific configurations for MindtPy.

    Raises
    ------
    ValueError
        MindtPy unable to handle the termination condition of the FP-NLP subproblem.
    """
    while solve_data.fp_iter < config.fp_iteration_limit:

        solve_data.mip_subiter = 0
        # solve MILP main problem
        feas_main, feas_main_results = solve_main(solve_data, config, fp=True)
        fp_should_terminate = handle_fp_main_tc(feas_main_results, solve_data,
                                                config)
        if fp_should_terminate:
            break

        # Solve NLP subproblem
        # The constraint linearization happens in the handlers
        fp_nlp, fp_nlp_result = solve_fp_subproblem(solve_data, config)

        if fp_nlp_result.solver.termination_condition in {
                tc.optimal, tc.locallyOptimal, tc.feasible
        }:
            config.logger.info(
                solve_data.log_formatter.format(
                    solve_data.fp_iter, 'FP-NLP',
                    value(fp_nlp.MindtPy_utils.fp_nlp_obj),
                    solve_data.primal_bound,
                    solve_data.dual_bound, solve_data.rel_gap,
                    get_main_elapsed_time(solve_data.timing)))
            handle_fp_subproblem_optimal(fp_nlp, solve_data, config)
        elif fp_nlp_result.solver.termination_condition in {
                tc.infeasible, tc.noSolution
        }:
            config.logger.error('Feasibility pump NLP subproblem infeasible')
            solve_data.should_terminate = True
            solve_data.results.solver.status = SolverStatus.error
            return
        elif fp_nlp_result.solver.termination_condition is tc.maxIterations:
            config.logger.error(
                'Feasibility pump NLP subproblem failed to converge within iteration limit.'
            )
            solve_data.should_terminate = True
            solve_data.results.solver.status = SolverStatus.error
            return
        else:
            raise ValueError(
                'MindtPy unable to handle NLP subproblem termination '
                'condition of {}'.format(
                    fp_nlp_result.solver.termination_condition))
        # Call the NLP post-solve callback
        config.call_after_subproblem_solve(fp_nlp, solve_data)
        solve_data.fp_iter += 1
    solve_data.mip.MindtPy_utils.del_component('fp_mip_obj')

    if config.fp_main_norm == 'L1':
        solve_data.mip.MindtPy_utils.del_component('L1_obj')
    elif config.fp_main_norm == 'L_infinity':
        solve_data.mip.MindtPy_utils.del_component('L_infinity_obj')

    # deactivate the improving_objective_cut
    solve_data.mip.MindtPy_utils.cuts.del_component('improving_objective_cut')
    if not config.fp_transfercuts:
        for c in solve_data.mip.MindtPy_utils.cuts.oa_cuts:
            c.deactivate()
        for c in solve_data.mip.MindtPy_utils.cuts.no_good_cuts:
            c.deactivate()
    if config.fp_projcuts:
        solve_data.working_model.MindtPy_utils.cuts.del_component(
            'fp_orthogonality_cuts')