Exemplo n.º 1
0
def makeDisjunctInMultipleDisjunctions():
    """This is not a transformable model! Two SimpleDisjunctions which have 
    a shared disjunct.
    """
    m = ConcreteModel()
    m.a = Var(bounds=(-10, 50))

    def d1_rule(disjunct, flag):
        m = disjunct.model()
        if flag:
            disjunct.c = Constraint(expr=m.a == 0)
        else:
            disjunct.c = Constraint(expr=m.a >= 5)

    m.disjunct1 = Disjunct([0, 1], rule=d1_rule)

    def d2_rule(disjunct, flag):
        if not flag:
            disjunct.c = Constraint(expr=m.a >= 30)
        else:
            disjunct.c = Constraint(expr=m.a == 100)

    m.disjunct2 = Disjunct([0, 1], rule=d2_rule)

    m.disjunction1 = Disjunction(expr=[m.disjunct1[0], m.disjunct1[1]])
    m.disjunction2 = Disjunction(expr=[m.disjunct2[0], m.disjunct1[1]])
    # Deactivate unused disjunct like we are supposed to
    m.disjunct2[1].deactivate()
    return m
Exemplo n.º 2
0
def makeTwoTermDisj_IndexedConstraints():
    """Single two-term disjunction with IndexedConstraints on both disjuncts.  
    Does not bound the variables, so cannot be transformed by hull at all and 
    requires specifying m values in bigm.
    """
    m = ConcreteModel()
    m.s = Set(initialize=[1, 2])
    m.a = Var(m.s)
    m.b = Block()

    def disj1_rule(disjunct):
        m = disjunct.model()

        def c_rule(d, s):
            return m.a[s] == 0

        disjunct.c = Constraint(m.s, rule=c_rule)

    m.b.simpledisj1 = Disjunct(rule=disj1_rule)

    def disj2_rule(disjunct):
        m = disjunct.model()

        def c_rule(d, s):
            return m.a[s] <= 3

        disjunct.c = Constraint(m.s, rule=c_rule)

    m.b.simpledisj2 = Disjunct(rule=disj2_rule)
    m.b.disjunction = Disjunction(expr=[m.b.simpledisj1, m.b.simpledisj2])
    return m
Exemplo n.º 3
0
 def test_compute_bounds(self):
     """Test computation of disjunctive bounds."""
     m = ConcreteModel()
     m.x = Var(bounds=(0, 8))
     m.d1 = Disjunct()
     m.d1.c = Constraint(expr=m.x >= 2)
     m.d2 = Disjunct()
     m.d2.c = Constraint(expr=m.x <= 4)
     m.disj = Disjunction(expr=[m.d1, m.d2])
     m.obj = Objective(expr=m.x)
     TransformationFactory('contrib.compute_disj_var_bounds').apply_to(m)
     self.assertEquals(m.d1._disj_var_bounds[m.x], (2, 8))
     self.assertEquals(m.d2._disj_var_bounds[m.x], (0, 4))
     self.assertEquals(disjunctive_lb(m.x, m.d1), 2)
     self.assertEquals(disjunctive_ub(m.x, m.d1), 8)
     self.assertEquals(disjunctive_lb(m.x, m.d2), 0)
     self.assertEquals(disjunctive_ub(m.x, m.d2), 4)
     self.assertEquals(len(m.d1._disjunctive_var_constraints), 2)
     self.assertEquals(len(m.d2._disjunctive_var_constraints), 2)
     self.assertIs(m.d1._disjunctive_var_constraints[1].body, m.x)
     self.assertEquals(m.d1._disjunctive_var_constraints[1].lower, 2)
     self.assertIs(m.d1._disjunctive_var_constraints[2].body, m.x)
     self.assertEquals(m.d1._disjunctive_var_constraints[2].upper, 8)
     self.assertIs(m.d2._disjunctive_var_constraints[1].body, m.x)
     self.assertEquals(m.d2._disjunctive_var_constraints[1].lower, 0)
     self.assertIs(m.d2._disjunctive_var_constraints[2].body, m.x)
     self.assertEquals(m.d2._disjunctive_var_constraints[2].upper, 4)
    def create_hull_model(self):
        m = ConcreteModel()
        m.p = Var([1, 2], bounds=(0, 10))
        m.time1 = Disjunction(expr=[m.p[1] >= 1, m.p[1] == 0])

        m.on = Disjunct()
        m.on.above_min = Constraint(expr=m.p[2] >= 1)
        m.on.ramping = Constraint(expr=m.p[2] - m.p[1] <= 3)
        m.on.on_before = Constraint(expr=m.p[1] >= 1)

        m.startup = Disjunct()
        m.startup.startup_limit = Constraint(expr=(1, m.p[2], 2))
        m.startup.off_before = Constraint(expr=m.p[1] == 0)

        m.off = Disjunct()
        m.off.off = Constraint(expr=m.p[2] == 0)
        m.time2 = Disjunction(expr=[m.on, m.startup, m.off])

        m.obj = Objective(expr=m.p[1] + m.p[2])

        hull = TransformationFactory('gdp.hull')
        hull.apply_to(m)
        disaggregatedVars = ComponentSet([
            hull.get_disaggregated_var(m.p[1], m.time1.disjuncts[0]),
            hull.get_disaggregated_var(m.p[1], m.time1.disjuncts[1]),
            hull.get_disaggregated_var(m.p[1], m.on),
            hull.get_disaggregated_var(m.p[2], m.on),
            hull.get_disaggregated_var(m.p[1], m.startup),
            hull.get_disaggregated_var(m.p[2], m.startup),
            hull.get_disaggregated_var(m.p[1], m.off),
            hull.get_disaggregated_var(m.p[2], m.off)
        ])

        return m, disaggregatedVars
Exemplo n.º 5
0
def makeTwoSimpleDisjunctions():
    """Two SimpleDisjunctions on the same model."""
    m = ConcreteModel()
    m.a = Var(bounds=(-10, 50))

    def d1_rule(disjunct, flag):
        m = disjunct.model()
        if flag:
            disjunct.c = Constraint(expr=m.a == 0)
        else:
            disjunct.c = Constraint(expr=m.a >= 5)

    m.disjunct1 = Disjunct([0, 1], rule=d1_rule)

    def d2_rule(disjunct, flag):
        if not flag:
            disjunct.c = Constraint(expr=m.a >= 30)
        else:
            disjunct.c = Constraint(expr=m.a == 100)

    m.disjunct2 = Disjunct([0, 1], rule=d2_rule)

    m.disjunction1 = Disjunction(expr=[m.disjunct1[0], m.disjunct1[1]])
    m.disjunction2 = Disjunction(expr=[m.disjunct2[0], m.disjunct2[1]])
    return m
Exemplo n.º 6
0
def makeAnyIndexedDisjunctionOfDisjunctDatas():
    """An IndexedDisjunction indexed by Any, with two two-term DisjunctionDatas
    build from DisjunctDatas. Identical mathematically to 
    makeDisjunctionOfDisjunctDatas.

    Used to test that the right things happen for a case where soemone
    implements an algorithm which iteratively generates disjuncts and 
    retransforms"""
    m = ConcreteModel()
    m.x = Var(bounds=(-100, 100))

    m.obj = Objective(expr=m.x)

    m.idx = Set(initialize=[1, 2])
    m.firstTerm = Disjunct(m.idx)
    m.firstTerm[1].cons = Constraint(expr=m.x == 0)
    m.firstTerm[2].cons = Constraint(expr=m.x == 2)
    m.secondTerm = Disjunct(m.idx)
    m.secondTerm[1].cons = Constraint(expr=m.x >= 2)
    m.secondTerm[2].cons = Constraint(expr=m.x >= 3)

    m.disjunction = Disjunction(Any)
    m.disjunction[1] = [m.firstTerm[1], m.secondTerm[1]]
    m.disjunction[2] = [m.firstTerm[2], m.secondTerm[2]]
    return m
Exemplo n.º 7
0
    def test_log_model_size(self):
        """Test logging functionality."""
        m = ConcreteModel()
        m.x = Var(domain=Integers)
        m.d = Disjunct()
        m.d.c = Constraint(expr=m.x == 1)
        m.d2 = Disjunct()
        m.d2.c = Constraint(expr=m.x == 5)
        m.disj = Disjunction(expr=[m.d2])
        output = StringIO()
        with LoggingIntercept(output, 'pyomo.util.model_size', logging.INFO):
            log_model_size_report(m)
        expected_output = """
activated:
    binary_variables: 1
    constraints: 1
    continuous_variables: 0
    disjunctions: 1
    disjuncts: 1
    integer_variables: 1
    nonlinear_constraints: 0
    variables: 2
overall:
    binary_variables: 2
    constraints: 2
    continuous_variables: 0
    disjunctions: 1
    disjuncts: 2
    integer_variables: 1
    nonlinear_constraints: 0
    variables: 3
warning:
    unassociated_disjuncts: 1
        """.strip()
        self.assertEqual(output.getvalue().strip(), expected_output)
Exemplo n.º 8
0
def makeTwoTermDisj_IndexedConstraints():
    m = ConcreteModel()
    m.s = Set(initialize=[1, 2])
    m.a = Var(m.s)
    m.b = Block()

    def disj1_rule(disjunct):
        m = disjunct.model()

        def c_rule(d, s):
            return m.a[s] == 0

        disjunct.c = Constraint(m.s, rule=c_rule)

    m.b.simpledisj1 = Disjunct(rule=disj1_rule)

    def disj2_rule(disjunct):
        m = disjunct.model()

        def c_rule(d, s):
            return m.a[s] <= 3

        disjunct.c = Constraint(m.s, rule=c_rule)

    m.b.simpledisj2 = Disjunct(rule=disj2_rule)
    m.b.disjunction = Disjunction(expr=[m.b.simpledisj1, m.b.simpledisj2])
    return m
Exemplo n.º 9
0
def makeNetworkDisjunction(minimize=True):
    """ creates a GDP model with pyomo.network components """
    m = ConcreteModel()

    m.feed = feed = Block()
    m.wkbx = wkbx = Block()
    m.dest = dest = Block()

    m.orange = orange = Disjunct()
    m.blue = blue = Disjunct()

    m.orange_or_blue = Disjunction(expr=[orange,blue])

    blue.blue_box = blue_box = Block()

    feed.x = Var(bounds=(0,1))
    wkbx.x = Var(bounds=(0,1))
    dest.x = Var(bounds=(0,1))

    wkbx.inlet = ntwk.Port(initialize={"x":wkbx.x})
    wkbx.outlet = ntwk.Port(initialize={"x":wkbx.x})

    feed.outlet = ntwk.Port(initialize={"x":feed.x})
    dest.inlet = ntwk.Port(initialize={"x":dest.x})

    blue_box.x = Var(bounds=(0,1))
    blue_box.x_wkbx = Var(bounds=(0,1))
    blue_box.x_dest = Var(bounds=(0,1))


    blue_box.inlet_feed = ntwk.Port(initialize={"x":blue_box.x})
    blue_box.outlet_wkbx = ntwk.Port(initialize={"x":blue_box.x})

    blue_box.inlet_wkbx = ntwk.Port(initialize={"x":blue_box.x_wkbx})
    blue_box.outlet_dest = ntwk.Port(initialize={"x":blue_box.x_dest})

    blue_box.multiplier_constr = Constraint(expr=blue_box.x_dest == \
                                            2*blue_box.x_wkbx)

    # orange arcs
    orange.a1 = ntwk.Arc(source=feed.outlet, destination=wkbx.inlet)
    orange.a2 = ntwk.Arc(source=wkbx.outlet, destination=dest.inlet)

    # blue arcs
    blue.a1 = ntwk.Arc(source=feed.outlet, destination=blue_box.inlet_feed)
    blue.a2 = ntwk.Arc(source=blue_box.outlet_wkbx, destination=wkbx.inlet)
    blue.a3 = ntwk.Arc(source=wkbx.outlet, destination=blue_box.inlet_wkbx)
    blue.a4 = ntwk.Arc(source=blue_box.outlet_dest, destination=dest.inlet)

    # maximize/minimize "production"
    if minimize:
        m.obj = Objective(expr=m.dest.x)
    else:
        m.obj = Objective(expr=m.dest.x, sense=maximize)

    # create a completely fixed model
    feed.x.fix(0.42)

    return m
Exemplo n.º 10
0
 def test_active_parent_block(self):
     m = ConcreteModel()
     m.d1 = Block()
     m.d1.sub1 = Disjunct()
     m.d1.sub2 = Disjunct()
     m.d1.disj = Disjunction(expr=[m.d1.sub1, m.d1.sub2])
     with self.assertRaises(GDP_Error):
         TransformationFactory('gdp.reclassify').apply_to(m)
Exemplo n.º 11
0
def makeNestedDisjunctions():
    """Three-term SimpleDisjunction built from two IndexedDisjuncts and one
    SimpleDisjunct. The SimpleDisjunct and one of the DisjunctDatas each
    contain a nested SimpleDisjunction (the disjuncts of which are declared 
    on the same disjunct as the disjunction).

    (makeNestedDisjunctions_NestedDisjuncts is a much simpler model. All 
    this adds is that it has a nested disjunction on a DisjunctData as well
    as on a SimpleDisjunct. So mostly it exists for historical reasons.)
    """
    m = ConcreteModel()
    m.x = Var(bounds=(-9, 9))
    m.z = Var(bounds=(0, 10))
    m.a = Var(bounds=(0, 23))

    def disjunct_rule(disjunct, flag):
        m = disjunct.model()
        if flag:

            def innerdisj_rule(disjunct, flag):
                m = disjunct.model()
                if flag:
                    disjunct.c = Constraint(expr=m.z >= 5)
                else:
                    disjunct.c = Constraint(expr=m.z == 0)

            disjunct.innerdisjunct = Disjunct([0, 1], rule=innerdisj_rule)

            @disjunct.Disjunction([0])
            def innerdisjunction(b, i):
                return [b.innerdisjunct[0], b.innerdisjunct[1]]

            disjunct.c = Constraint(expr=m.a <= 2)
        else:
            disjunct.c = Constraint(expr=m.x == 2)

    m.disjunct = Disjunct([0, 1], rule=disjunct_rule)

    # I want a SimpleDisjunct with a disjunction in it too

    def simpledisj_rule(disjunct):
        m = disjunct.model()

        @disjunct.Disjunct()
        def innerdisjunct0(disjunct):
            disjunct.c = Constraint(expr=m.x <= 2)

        @disjunct.Disjunct()
        def innerdisjunct1(disjunct):
            disjunct.c = Constraint(expr=m.x >= 4)

        disjunct.innerdisjunction = Disjunction(
            expr=[disjunct.innerdisjunct0, disjunct.innerdisjunct1])

    m.simpledisjunct = Disjunct(rule=simpledisj_rule)
    m.disjunction = Disjunction(
        expr=[m.simpledisjunct, m.disjunct[0], m.disjunct[1]])
    return m
Exemplo n.º 12
0
 def test_disjunction_not_sum_to_1(self):
     m = ConcreteModel()
     m.d1 = Disjunct()
     m.d2 = Disjunct()
     m.d = Disjunction(expr=[m.d1, m.d2], xor=False)
     m.d1.indicator_var.set_value(0)
     m.d2.indicator_var.set_value(0)
     with self.assertRaises(GDP_Error):
         TransformationFactory('gdp.fix_disjuncts').apply_to(m)
Exemplo n.º 13
0
def makeDisjunctWithRangeSet():
    m = ConcreteModel()
    m.x = Var(bounds=(0, 1))
    m.d1 = Disjunct()
    m.d1.s = RangeSet(1)
    m.d1.c = Constraint(rule=lambda _: m.x == 1)
    m.d2 = Disjunct()
    m.disj = Disjunction(expr=[m.d1, m.d2])
    return m
Exemplo n.º 14
0
 def test_unassociated_disjunct(self):
     m = ConcreteModel()
     m.x = Var(domain=Integers)
     m.d = Disjunct()
     m.d.c = Constraint(expr=m.x == 1)
     m.d2 = Disjunct()
     m.d2.c = Constraint(expr=m.x == 5)
     m.disj = Disjunction(expr=[m.d2])
     model_size = build_model_size_report(m)
     self.assertEqual(model_size.warning.unassociated_disjuncts, 1)
Exemplo n.º 15
0
def oneVarDisj_2pts():
    m = ConcreteModel()
    m.x = Var(bounds=(0, 10))
    m.disj1 = Disjunct()
    m.disj1.xTrue = Constraint(expr=m.x==1)
    m.disj2 = Disjunct()
    m.disj2.xFalse = Constraint(expr=m.x==0)
    m.disjunction = Disjunction(expr=[m.disj1, m.disj2])
    m.obj = Objective(expr=m.x)
    return m
Exemplo n.º 16
0
def add_disj_not_on_block(m):
    def simpdisj_rule(disjunct):
        m = disjunct.model()
        disjunct.c = Constraint(expr=m.a >= 3)
    m.simpledisj = Disjunct(rule=simpdisj_rule)
    def simpledisj2_rule(disjunct):
        m = disjunct.model()
        disjunct.c = Constraint(expr=m.a <= 3.5)
    m.simpledisj2 = Disjunct(rule=simpledisj2_rule)
    m.disjunction2 = Disjunction(expr=[m.simpledisj, m.simpledisj2])
    return m
Exemplo n.º 17
0
def makeDisjunctWithRangeSet():
    """Two-term SimpleDisjunction where one of the disjuncts contains a 
    RangeSet"""
    m = ConcreteModel()
    m.x = Var(bounds=(0, 1))
    m.d1 = Disjunct()
    m.d1.s = RangeSet(1)
    m.d1.c = Constraint(rule=lambda _: m.x == 1)
    m.d2 = Disjunct()
    m.disj = Disjunction(expr=[m.d1, m.d2])
    return m
Exemplo n.º 18
0
 def test_disjunct_not_binary(self):
     m = ConcreteModel()
     m.d1 = Disjunct()
     m.d2 = Disjunct()
     m.d = Disjunction(expr=[m.d1, m.d2])
     m.d1.indicator_var.domain = NonNegativeReals
     m.d2.indicator_var.domain = NonNegativeReals
     m.d1.indicator_var.set_value(0.5)
     m.d2.indicator_var.set_value(0.5)
     with self.assertRaises(ValueError):
         TransformationFactory('gdp.fix_disjuncts').apply_to(m)
Exemplo n.º 19
0
 def test_deactivated_parent_block(self):
     m = ConcreteModel()
     m.d1 = Block()
     m.d1.sub1 = Disjunct()
     m.d1.sub2 = Disjunct()
     m.d1.disj = Disjunction(expr=[m.d1.sub1, m.d1.sub2])
     m.d1.deactivate()
     TransformationFactory('gdp.reclassify').apply_to(m)
     self.assertIs(m.d1.type(), Block)
     self.assertIs(m.d1.sub1.type(), Block)
     self.assertIs(m.d1.sub2.type(), Block)
Exemplo n.º 20
0
 def test_active_parent_disjunct_target(self):
     m = ConcreteModel()
     m.d1 = Disjunct()
     m.d1.sub1 = Disjunct()
     m.d1.sub2 = Disjunct()
     m.d1.disj = Disjunction(expr=[m.d1.sub1, m.d1.sub2])
     TransformationFactory('gdp.bigm').apply_to(m, targets=m.d1.disj)
     m.d1.indicator_var.fix(1)
     TransformationFactory('gdp.reclassify').apply_to(m)
     self.assertIs(m.d1.type(), Block)
     self.assertIs(m.d1.sub1.type(), Block)
     self.assertIs(m.d1.sub2.type(), Block)
Exemplo n.º 21
0
def makeDisjunctWithExpression():
    """Two-term SimpleDisjunction where one of the disjuncts contains an 
    Expression. This is used to make sure that we correctly handle types we 
    hit in disjunct.component_objects(active=True)"""
    m = ConcreteModel()
    m.x = Var(bounds=(0, 1))
    m.d1 = Disjunct()
    m.d1.e = Expression(expr=m.x**2)
    m.d1.c = Constraint(rule=lambda _: m.x == 1)
    m.d2 = Disjunct()
    m.disj = Disjunction(expr=[m.d1, m.d2])
    return m
Exemplo n.º 22
0
def instantiate_hierarchical_nested_model(m):
    """helper function to instantiate a nested version of the model with 
    the Disjuncts and Disjunctions on blocks"""
    m.disj1 = Disjunct()
    m.disjunct_block.disj2 = Disjunct()
    m.disj1.c = Constraint(expr=sum(m.x[i]**2 for i in m.I) <= 1)
    m.disjunct_block.disj2.c = Constraint(expr=sum((3 - m.x[i])**2 for i in
                                                   m.I) <= 1)
    m.disjunct_block.disj2.disjunction = Disjunction(
        expr=[[sum(m.x[i]**2 for i in m.I) <= 1],
              [sum((3 - m.x[i])**2 for i in m.I) <= 1]])
    m.disjunction_block.disjunction = Disjunction(
        expr=[m.disj1, m.disjunct_block.disj2])
Exemplo n.º 23
0
 def test_disjunction_unsat(self):
     m = ConcreteModel()
     m.x1 = Var(bounds=(0, 8))
     m.x2 = Var(bounds=(0, 8))
     m.obj = Objective(expr=m.x1 + m.x2, sense=minimize)
     m.y1 = Disjunct()
     m.y2 = Disjunct()
     m.y1.c1 = Constraint(expr=m.x1 >= 9)
     m.y1.c2 = Constraint(expr=m.x2 >= 2)
     m.y2.c1 = Constraint(expr=m.x1 >= 3)
     m.y2.c2 = Constraint(expr=m.x2 >= 9)
     m.djn = Disjunction(expr=[m.y1, m.y2])
     self.assertFalse(satisfiable(m))
Exemplo n.º 24
0
    def get_model(self):
        m = ConcreteModel()
        m.x = Var(bounds=(-100, 100))

        m.obj = Objective(expr=m.x)

        m.disjunct1 = Disjunct()
        m.disjunct1.comp = Complementarity(expr=complements(m.x >= 0, 4*m.x - 3 >= 0))
        m.disjunct2 = Disjunct()
        m.disjunct2.cons = Constraint(expr=m.x >= 2)

        m.disjunction = Disjunction(expr=[m.disjunct1, m.disjunct2])

        return m
Exemplo n.º 25
0
def twoSegments_SawayaGrossmann():
    m = ConcreteModel()
    m.x = Var(bounds=(0, 3))
    m.disj1 = Disjunct()
    m.disj1.c = Constraint(expr=inequality(0, m.x, 1))
    m.disj2 = Disjunct()
    m.disj2.c = Constraint(expr=inequality(2, m.x, 3))
    m.disjunction = Disjunction(expr=[m.disj1, m.disj2])

    # this is my objective because I want to make sure that when I am testing
    # cutting planes, my first solution to rBigM is not on the convex hull.
    m.obj = Objective(expr=m.x - m.disj2.indicator_var)

    return m
Exemplo n.º 26
0
def grossmann_twoDisj():
    m = grossmann_oneDisj()

    m.disjunct3 = Disjunct()
    m.disjunct3.constraintx = Constraint(expr=inequality(1, m.x, 2.5))
    m.disjunct3.constrainty = Constraint(expr=inequality(6.5, m.y, 8))
    
    m.disjunct4 = Disjunct()
    m.disjunct4.constraintx = Constraint(expr=inequality(9, m.x, 11))
    m.disjunct4.constrainty = Constraint(expr=inequality(2, m.y, 3.5))

    m.disjunction2 = Disjunction(expr=[m.disjunct3, m.disjunct4])
    
    return m
Exemplo n.º 27
0
def twoDisj_twoCircles_easy():
    m = ConcreteModel()
    m.x = Var(bounds=(0,8))
    m.y = Var(bounds=(0,10))

    m.upper_circle = Disjunct()
    m.upper_circle.cons = Constraint(expr=(m.x - 1)**2 + (m.y - 6)**2 <= 2)
    m.lower_circle = Disjunct()
    m.lower_circle.cons = Constraint(expr=(m.x - 4)**2 + (m.y - 2)**2 <= 2)

    m.disjunction = Disjunction(expr=[m.upper_circle, m.lower_circle])
    
    m.obj = Objective(expr=m.x + m.y, sense=maximize)
    return m
    def test_disjunct_not_in_disjunction(self):
        m = pyo.ConcreteModel()
        m.x = pyo.Var()
        m.d1 = Disjunct()
        m.d1.c = pyo.Constraint(expr=m.x == 1)
        m.d2 = Disjunct()
        m.d2.c = pyo.Constraint(expr=m.x == 0)

        pyo.TransformationFactory('gdp.bigm').apply_to(m)
        log = StringIO()
        with LoggingIntercept(log, 'pyomo.gdp', logging.WARNING):
            check_model_algebraic(m)
        self.assertRegexpMatches(log.getvalue(),
                                 '.*not found in any Disjunctions.*')
Exemplo n.º 29
0
def fourCircles():
    m = twoDisj_twoCircles_easy()

    # and add two more overlapping circles, a la the Grossmann test case with
    # the rectangles. (but not change my nice integral optimal solution...)
    m.upper_circle2 = Disjunct()
    m.upper_circle2.cons = Constraint(expr=(m.x - 2)**2 + (m.y - 7)**2 <= 1)

    m.lower_circle2 = Disjunct()
    m.lower_circle2.cons = Constraint(expr=(m.x - 5)**2 + (m.y - 3)**2 <= 2)

    m.disjunction2 = Disjunction(expr=[m.upper_circle2, m.lower_circle2])

    return m
Exemplo n.º 30
0
def makeNestedDisjunctions():
    m = ConcreteModel()
    m.x = Var(bounds=(-9, 9))
    m.z = Var(bounds=(0, 10))
    m.a = Var(bounds=(0, 23))

    def disjunct_rule(disjunct, flag):
        m = disjunct.model()
        if flag:

            def innerdisj_rule(disjunct, flag):
                m = disjunct.model()
                if flag:
                    disjunct.c = Constraint(expr=m.z >= 5)
                else:
                    disjunct.c = Constraint(expr=m.z == 0)

            disjunct.innerdisjunct = Disjunct([0, 1], rule=innerdisj_rule)

            @disjunct.Disjunction([0])
            def innerdisjunction(b, i):
                return [b.innerdisjunct[0], b.innerdisjunct[1]]

            disjunct.c = Constraint(expr=m.a <= 2)
        else:
            disjunct.c = Constraint(expr=m.x == 2)

    m.disjunct = Disjunct([0, 1], rule=disjunct_rule)

    # I want a SimpleDisjunct with a disjunction in it too

    def simpledisj_rule(disjunct):
        m = disjunct.model()

        @disjunct.Disjunct()
        def innerdisjunct0(disjunct):
            disjunct.c = Constraint(expr=m.x <= 2)

        @disjunct.Disjunct()
        def innerdisjunct1(disjunct):
            disjunct.c = Constraint(expr=m.x >= 4)

        disjunct.innerdisjunction = Disjunction(
            expr=[disjunct.innerdisjunct0, disjunct.innerdisjunct1])

    m.simpledisjunct = Disjunct(rule=simpledisj_rule)
    m.disjunction = Disjunction(
        expr=[m.simpledisjunct, m.disjunct[0], m.disjunct[1]])
    return m