Exemplo n.º 1
0
    def make_ef(self,
                verbose=False,
                generate_weighted_cvar=False,
                cvar_weight=None,
                risk_alpha=None,
                cc_indicator_var_name=None,
                cc_alpha=0.0):
        """ Make an ef object (used by solve_ef); all Args are optional.
        
        Args:
            verbose (boolean): indicates verbosity to PySP for construction
            generate_weighted_cvar (boolean): indicates we want weighted CVar
            cvar_weight (float): weight for the cvar term
            risk_alpha (float): alpha value for cvar
            cc_indicator_var_name (string): name of the Var used for chance constraint
            cc_alpha (float): alpha for chance constraint

        Returns:
            ef_instance: the ef object
        """
        return pyspef.create_ef_instance(
            self.scenario_tree,
            verbose_output=verbose,
            generate_weighted_cvar=generate_weighted_cvar,
            cvar_weight=cvar_weight,
            risk_alpha=risk_alpha,
            cc_indicator_var_name=cc_indicator_var_name,
            cc_alpha=cc_alpha)
def CreateExtensiveFormInstance(options, scenario_tree):

    start_time = time.time()
    print("Creating extensive form instance")

    # then validate the associated parameters.
    generate_weighted_cvar = False
    cvar_weight = None
    risk_alpha = None
    if options.generate_weighted_cvar is True:
        generate_weighted_cvar = True
        cvar_weight = options.cvar_weight
        risk_alpha = options.risk_alpha

    binding_instance = create_ef_instance(scenario_tree,
                                          verbose_output=options.verbose,
                                          generate_weighted_cvar=generate_weighted_cvar,
                                          cvar_weight=cvar_weight,
                                          risk_alpha=risk_alpha,
                                          cc_indicator_var_name=options.cc_indicator_var,
                                          cc_alpha=options.cc_alpha)

    if options.verbose or options.output_times:
        print("Time to construct extensive form instance=%.2f seconds"
              %(time.time() - start_time))

    return binding_instance
Exemplo n.º 3
0
Arquivo: ef.py Projeto: Pyomo/pyomo
    def build_ef(self):
        self.destroy_ef()
        if self.get_option("verbose"):
            print("Creating extensive form instance")
        start_time = time.time()

        # then validate the associated parameters.
        generate_weighted_cvar = False
        cvar_weight = None
        risk_alpha = None
        if self.get_option("generate_weighted_cvar"):
            generate_weighted_cvar = True
            cvar_weight = self.get_option("cvar_weight")
            risk_alpha = self.get_option("risk_alpha")

        self.instance = create_ef_instance(
            self._manager.scenario_tree,
            verbose_output=self.get_option("verbose"),
            generate_weighted_cvar=generate_weighted_cvar,
            cvar_weight=cvar_weight,
            risk_alpha=risk_alpha,
            cc_indicator_var_name=self.get_option("cc_indicator_var"),
            cc_alpha=self.get_option("cc_alpha"))

        if self.get_option("verbose") or self.get_option("output_times"):
            print("Time to construct extensive form instance=%.2f seconds"
                  %(time.time() - start_time))
Exemplo n.º 4
0
Arquivo: ef.py Projeto: CanLi1/pyomo-1
    def build_ef(self):
        self.destroy_ef()
        if self.get_option("verbose"):
            print("Creating extensive form instance")
        start_time = time.time()

        # then validate the associated parameters.
        generate_weighted_cvar = False
        cvar_weight = None
        risk_alpha = None
        if self.get_option("generate_weighted_cvar"):
            generate_weighted_cvar = True
            cvar_weight = self.get_option("cvar_weight")
            risk_alpha = self.get_option("risk_alpha")

        self.instance = create_ef_instance(
            self._manager.scenario_tree,
            verbose_output=self.get_option("verbose"),
            generate_weighted_cvar=generate_weighted_cvar,
            cvar_weight=cvar_weight,
            risk_alpha=risk_alpha,
            cc_indicator_var_name=self.get_option("cc_indicator_var"),
            cc_alpha=self.get_option("cc_alpha"))

        if self.get_option("verbose") or self.get_option("output_times"):
            print("Time to construct extensive form instance=%.2f seconds" %
                  (time.time() - start_time))
Exemplo n.º 5
0
    def make_ef(self, verbose=False):
        """ Make an ef object (used by solve_ef)

        Args:
            verbose (boolean): indicates verbosity to PySP for construction

        Returns:
            ef_instance: the ef object
        """
        return create_ef_instance(self.scenario_tree, verbose_output=verbose)
Exemplo n.º 6
0
    def make_ef(self, verbose=False):
        """ Make an ef object (used by solve_ef)
        
        Args:
            verbose (boolean): indicates verbosity to PySP for construction

        Returns:
            ef_instance: the ef object
        """
        return pyspef.create_ef_instance(self.scenario_tree, verbose_output=verbose)
Exemplo n.º 7
0
    def solve_ef(self, subsolver, sopts=None):
        # Solve the stochastic program directly using the extensive form.
        # subsolver: the solver to call (e.g., 'ipopt')
        # sopts: dictionary of solver options
        # Returns the entire ef_instance populated with the solution.

        ef_instance = create_ef_instance(self.scenario_tree,
                                         verbose_output=True)
        solver = SolverFactory(subsolver)
        if sopts is not None:
            for key in sopts:
                solver.options[key] = sopts[key]

        solver.solve(ef_instance)  # , tee = True)
        return ef_instance
Exemplo n.º 8
0
    def solve_ef(self, subsolver, sopts = None, tee = False):
        """
        Solve the stochastic program directly using the extensive form.
        args:
            subsolver: the solver to call (e.g., 'ipopt')
            sopts: dictionary of solver options
            tee: the usual to indicate dynamic solver output to terminal.
        Update the scenario tree, populated with the solution.
        """
        
        ef_instance = create_ef_instance(self.scenario_tree, verbose_output=True)
        solver = SolverFactory(subsolver)
        if sopts is not None:
            for key in sopts:
                solver.options[key] = sopts[key]

        solver.solve(ef_instance, tee = tee)

        self.scenario_tree.pullScenarioSolutionsFromInstances()
        self.scenario_tree.snapshotSolutionFromScenarios() # update nodes
Exemplo n.º 9
0
def solve_ef(p_model, p_data, temoa_options=None):
    """
    solve_ef(p_model, p_data) -> objective value of the extensive form
    Solves the model in stochastic mode. 
    p_model -> string, the path to the model file (ReferenceModel.py). 
    p_data -> string, the path to the directory of data for the stochastic
    mdoel, where ScenarioStructure.dat should resides.
    Returns a float point number of the value of objective function for the
    stochastic program model.
    """

    options = ScenarioTreeManagerClientSerial.register_options()

    if os.path.basename(p_model) == 'ReferenceModel.py':
        options.model_location = os.path.dirname(p_model)
    else:
        sys.stderr.write(
            '\nModel file should be ReferenceModel.py. Exiting...\n')
        sys.exit(1)
    options.scenario_tree_location = p_data

    # using the 'with' block will automatically call
    # manager.close() and gracefully shutdown
    with ScenarioTreeManagerClientSerial(options) as manager:
        manager.initialize()

        ef_instance = create_ef_instance(manager.scenario_tree,
                                         verbose_output=options.verbose)

        ef_instance.dual = Suffix(direction=Suffix.IMPORT)

        with SolverFactory(temoa_options.solver) as opt:

            ef_result = opt.solve(ef_instance)

        # Write to database
        if hasattr(temoa_options, 'output'):
            sys.path.append(options.model_location)
            from pformat_results import pformat_results
            # from temoa_config import TemoaConfig
            # temoa_options = TemoaConfig()
            # temoa_options.config = temoa_options.config
            # temoa_options.keepPyomoLP = temoa_options.keepPyomoLP
            # temoa_options.saveTEXTFILE = temoa_options.saveTEXTFILE
            # temoa_options.path_to_db_io = temoa_options.path_to_db_io
            # temoa_options.saveEXCEL = temoa_options.saveEXCEL
            ef_result.solution.Status = 'feasible'  # Assume it is feasible
            # Maybe there is a better solution using manager, but now it is a
            # kludge to use return_CP_and_path() function
            s2cd_dict, s2fp_dict = return_CP_and_path(p_data)
            stochastic_run = temoa_options.scenario  # Name of stochastic run
            for s in manager.scenario_tree.scenarios:
                ins = s._instance
                temoa_options.scenario = '.'.join([stochastic_run, s.name])
                temoa_options.dot_dat = list()
                for fname in s2fp_dict[s.name]:
                    temoa_options.dot_dat.append(
                        os.path.join(options.scenario_tree_location, fname))
                # temoa_options.output = os.path.join(
                #     options.scenario_tree_location,
                #     stochastic_output
                #     )
                msg = '\nStoring results from scenario {} to database.\n'.format(
                    s.name)
                sys.stderr.write(msg)
                formatted_results = pformat_results(ins, ef_result,
                                                    temoa_options)

    ef_instance.solutions.store_to(ef_result)
    ef_obj = value(ef_instance.EF_EXPECTED_COST.values()[0])
    return ef_obj
Exemplo n.º 10
0
#    print(options.about(name))

# To see a more compact display of options
#options.display()

options.model_location = \
    os.path.join(farmer_example_dir, 'models')
options.scenario_tree_location = \
    os.path.join(farmer_example_dir, 'scenariodata')

# using the 'with' block will automatically call
# manager.close() and gracefully shutdown
with ScenarioTreeManagerClientSerial(options) as manager:
    manager.initialize()

    ef_instance = create_ef_instance(manager.scenario_tree,
                                     verbose_output=options.verbose)

    ef_instance.dual = Suffix(direction=Suffix.IMPORT)

    with SolverFactory('cplex') as opt:

        opt.solve(ef_instance)

        #
        # Print duals of non-anticipaticity constraints
        #
        master_constraint_map = ef_instance.MASTER_CONSTRAINT_MAP
        print("%50s %20s" % ("Variable", "Dual"))
        for scenario in manager.scenario_tree.scenarios:
            instance = scenario._instance
            for i in instance.DevotedAcreage:
Exemplo n.º 11
0
def solve_ef(p_model, p_data, dummy_temoa_options=None):
    """
    solve_ef(p_model, p_data) -> objective value of the extensive form
    Solves the model in stochastic mode. 
    p_model -> string, the path to the model file (ReferenceModel.py). 
    p_data -> string, the path to the directory of data for the stochastic
    mdoel, where ScenarioStructure.dat should resides.
    Returns a float point number of the value of objective function for the
    stochastic program model.
    """

    options = ScenarioTreeManagerClientSerial.register_options()

    if os.path.basename(p_model) == 'ReferenceModel.py':
        options.model_location = os.path.dirname(p_model)
    else:
        sys.stderr.write(
            '\nModel file should be ReferenceModel.py. Exiting...\n')
        sys.exit(1)
    options.scenario_tree_location = p_data

    # using the 'with' block will automatically call
    # manager.close() and gracefully shutdown
    with ScenarioTreeManagerClientSerial(options) as manager:
        manager.initialize()

        ef_instance = create_ef_instance(manager.scenario_tree,
                                         verbose_output=options.verbose)

        ef_instance.dual = Suffix(direction=Suffix.IMPORT)

        with SolverFactory('cplex') as opt:

            ef_result = opt.solve(ef_instance)

        # Write to database
        if dummy_temoa_options:
            sys.path.append(options.model_location)
            from pformat_results import pformat_results
            from temoa_config import TemoaConfig
            temoa_options = TemoaConfig()
            temoa_options.config = dummy_temoa_options.config
            temoa_options.keepPyomoLP = dummy_temoa_options.keepPyomoLP
            temoa_options.saveTEXTFILE = dummy_temoa_options.saveTEXTFILE
            temoa_options.path_to_db_io = dummy_temoa_options.path_to_db_io
            temoa_options.saveEXCEL = dummy_temoa_options.saveEXCEL
            ef_result.solution.Status = 'feasible'  # Assume it is feasible
            for s in manager.scenario_tree.scenarios:
                ins = s._instance
                temoa_options.scenario = s.name
                temoa_options.dot_dat = [
                    os.path.join(options.scenario_tree_location,
                                 s.name + '.dat')
                ]
                temoa_options.output = os.path.join(
                    options.scenario_tree_location, dummy_temoa_options.output)
                msg = '\nStoring results from scenario {} to database.\n'.format(
                    s.name)
                sys.stderr.write(msg)
                formatted_results = pformat_results(ins, ef_result,
                                                    temoa_options)

    ef_instance.solutions.store_to(ef_result)
    ef_obj = value(ef_instance.EF_EXPECTED_COST.values()[0])
    return ef_obj
Exemplo n.º 12
0
def create_problem_with_scenarios(power_system, times):
    logging.debug('constructing scenario tree')

    scenario_tree = ScenarioTree(
        scenarioinstance=power_system._model,
        scenariotreeinstance=power_system._scenario_tree_instance)

    if not scenario_tree.validate():
        for s, scenario in enumerate(scenario_tree._scenarios):
            print s, scenario
        raise ValueError('not a valid scenario tree')

    gen = power_system.get_generator_with_scenarios()

    scenario_instances = {}

    # construct scenario instances
    logging.debug('constructing scenario instances')
    gc.disable()
    for s, scenario in enumerate(scenario_tree._scenarios):
        scenario_instance = power_system._model.clone()

        power = getattr(scenario_instance, 'power_{}'.format(str(gen)))
        # set the values of the parameter for this scenario
        logging.debug('setting scenario values for s%i' % s)
        scenario_vals = gen._get_scenario_values(times, s=s)
        for t, time in enumerate(times):
            power[time] = scenario_vals[t]

        # power.pprint()
        scenario_instance.preprocess()
        scenario_instances[scenario._name] = scenario_instance

    gc.enable()
    scenario_tree.defineVariableIndexSets(power_system._model)

    cvar_params = {}
    if user_config.cvar_weight > 0:
        cvar_params = dict(
            generate_weighted_cvar=True,
            cvar_weight=user_config.cvar_weight,
            risk_alpha=user_config.cvar_confidence_level,
        )

    full_problem_instance = create_ef_instance(scenario_tree,
                                               scenario_instances,
                                               **cvar_params)

    # full_problem_instance.pprint()

    # relax the non-anticipatory constraints on the generator status variables
    # beyond the UC time horizon
    if len(times.post_horizon()) > 0:
        logging.debug(
            'removing non-anticipatory constraints for post-commitment horizon'
        )
    for time in times.post_horizon():
        for scenario in scenario_instances.keys():
            for gen in power_system.generators():
                if not gen.is_controllable:
                    continue
                u = gen.status().name
                delattr(full_problem_instance,
                        '{s}_{u}_{t}'.format(s=scenario, u=u, t=str(time)))

    power_system.stochastic_formulation = True
    power_system._stochastic_instance = full_problem_instance
    power_system._scenario_tree = scenario_tree
    power_system._scenario_instances = scenario_instances
    return
Exemplo n.º 13
0
thisdir = os.path.dirname(os.path.abspath(__file__))
farmer_example_dir = os.path.join(os.path.dirname(thisdir), 'farmer')

options = ScenarioTreeManagerClientSerial.register_options()

options.model_location = \
    os.path.join(farmer_example_dir, 'models')
options.scenario_tree_location = \
    os.path.join(farmer_example_dir, 'scenariodata')

# using the 'with' block will automatically call
# manager.close() and gracefully shutdown
with ScenarioTreeManagerClientSerial(options) as manager:
    manager.initialize()

    ef_instance = create_ef_instance(manager.scenario_tree,
                                     verbose_output=options.verbose)

    ef_instance.dual = Suffix(direction=Suffix.IMPORT)

    with SolverFactory('cplex') as opt:

        opt.solve(ef_instance)

        #
        # Print duals of non-anticipaticity constraints
        #
        master_constraint_map = ef_instance.MASTER_CONSTRAINT_MAP
        print("%50s %20s" % ("Variable", "Dual"))
        for scenario in manager.scenario_tree.scenarios:
            instance = scenario._instance
            for i in instance.DevotedAcreage:
Exemplo n.º 14
0
    ScenarioTreeInstanceFactory

from gas_network_model import (pysp_instance_creation_callback,
                               nx_scenario_tree)

from pyomo.pysp.ef import create_ef_instance

# define and initialize the SP
instance_factory = ScenarioTreeInstanceFactory(pysp_instance_creation_callback,
                                               nx_scenario_tree)
options = ScenarioTreeManagerFactory.register_options()
options.scenario_tree_manager = 'serial'
sp = ScenarioTreeManagerFactory(options, factory=instance_factory)
sp.initialize()

instance = create_ef_instance(sp.scenario_tree)

#instance = create_model(1.0)
print("\nHi this is PyNumero")
nlp = PyomoNLP(instance)
print("\n----------------------")
print("Problem statistics:")
print("----------------------")
print("Number of variables: {:>25d}".format(nlp.nx))
print("Number of equality constraints: {:>14d}".format(nlp.nc))
print("Number of inequality constraints: {:>11d}".format(nlp.nd))
print("Total number of constraints: {:>17d}".format(nlp.ng))
print("Number of nnz in Jacobian: {:>20d}".format(nlp.nnz_jacobian_g))
print("Number of nnz in hessian of Lagrange: {:>8d}".format(
    nlp.nnz_hessian_lag))
Exemplo n.º 15
0
def create_problem_with_scenarios(power_system, times):
    logging.debug('constructing scenario tree')

    scenario_tree = ScenarioTree(
        scenarioinstance=power_system._model,
        scenariotreeinstance=power_system._scenario_tree_instance)

    if not scenario_tree.validate():
        for s, scenario in enumerate(scenario_tree._scenarios):
            print s, scenario
        raise ValueError('not a valid scenario tree')

    gen = power_system.get_generator_with_scenarios()

    scenario_instances = {}

    # construct scenario instances
    logging.debug('constructing scenario instances')
    gc.disable()
    for s, scenario in enumerate(scenario_tree._scenarios):
        scenario_instance = power_system._model.clone()

        power = getattr(scenario_instance, 'power_{}'.format(str(gen)))
        # set the values of the parameter for this scenario
        logging.debug('setting scenario values for s%i' % s)
        scenario_vals = gen._get_scenario_values(times, s=s)
        for t, time in enumerate(times):
            power[time] = scenario_vals[t]

        # power.pprint()
        scenario_instance.preprocess()
        scenario_instances[scenario._name] = scenario_instance

    gc.enable()
    scenario_tree.defineVariableIndexSets(power_system._model)

    cvar_params = {}
    if user_config.cvar_weight > 0:
        cvar_params = dict(
            generate_weighted_cvar=True,
            cvar_weight=user_config.cvar_weight,
            risk_alpha=user_config.cvar_confidence_level,
        )

    full_problem_instance = create_ef_instance(
        scenario_tree, scenario_instances, **cvar_params)

    # full_problem_instance.pprint()

    # relax the non-anticipatory constraints on the generator status variables
    # beyond the UC time horizon
    if len(times.post_horizon()) > 0:
        logging.debug('removing non-anticipatory constraints for post-commitment horizon')
    for time in times.post_horizon():
        for scenario in scenario_instances.keys():
            for gen in power_system.generators():
                if not gen.is_controllable:
                    continue
                u = gen.status().name
                delattr(full_problem_instance,
                        '{s}_{u}_{t}'.format(s=scenario, u=u, t=str(time)))

    power_system.stochastic_formulation = True
    power_system._stochastic_instance = full_problem_instance
    power_system._scenario_tree = scenario_tree
    power_system._scenario_instances = scenario_instances
    return
Exemplo n.º 16
0
from gas_network_model import (pysp_instance_creation_callback,
                               nx_scenario_tree)

from pyomo.pysp.ef import create_ef_instance

# define and initialize the SP
instance_factory = ScenarioTreeInstanceFactory(
    pysp_instance_creation_callback,
    nx_scenario_tree)
options = ScenarioTreeManagerFactory.register_options()
options.scenario_tree_manager = 'serial'
sp = ScenarioTreeManagerFactory(options,
                                factory=instance_factory)
sp.initialize()

instance = create_ef_instance(sp.scenario_tree)

#instance = create_model(1.0)
print("\nHi this is PyNumero")
nlp = PyomoNLP(instance)
print("\n----------------------")
print("Problem statistics:")
print("----------------------")
print("Number of variables: {:>25d}".format(nlp.nx))
print("Number of equality constraints: {:>14d}".format(nlp.nc))
print("Number of inequality constraints: {:>11d}".format(nlp.nd))
print("Total number of constraints: {:>17d}".format(nlp.ng))
print("Number of nnz in Jacobian: {:>20d}".format(nlp.nnz_jacobian_g))
print("Number of nnz in hessian of Lagrange: {:>8d}".format(nlp.nnz_hessian_lag))

x = nlp.x_init()