Exemplo n.º 1
0
def pc_plot_extcenwid(tempcen, cenwid, binval, plotsdir="Plots", pcatype="<unknown>", maxp=25, prefix=""):
    """
    Saves a few output png files of the PCA analysis for the target centroid/width definition
    """
    npc = tempcen.shape[1]
    pages, npp = get_dimen(npc,maxp=maxp)
    x0=binval*np.arange(cenwid.shape[0])
    # First calculate the min and max values for the plotting axes, to make sure they are all the same
    ymin, ymax = None, None
    """
    for i in xrange(npc):
        w = np.where(tempcen[:,i]!=-999999.9)
        if np.size(w[0]) == 0: continue
        medv = np.median(tempcen[:,i][w])
        madv = 1.4826*np.median(np.abs(medv-tempcen[:,i][w]))
        vmin, vmax = medv-3.0*madv, medv+3.0*madv
        tymin = min(vmin,np.min(cenwid[:,i]))
        tymax = max(vmax,np.max(cenwid[:,i]))
        if ymin is None: ymin = tymin
        else:
            if tymin < ymin: ymin = tymin
        if ymax is None: ymax = tymax
        else:
            if tymax > ymax: ymax = tymax
    """
    w = np.where(tempcen!=-999999.9)
    if np.size(w[0]) != 0:
        medv = np.median(tempcen[w])
        madv = 1.4826*np.median(np.abs(medv-tempcen[w]))
        vmin, vmax = medv-3.0*madv, medv+3.0*madv
        tymin = min(vmin,np.min(cenwid))
        tymax = max(vmax,np.max(cenwid))
        if ymin is None: ymin = tymin
        else:
            if tymin < ymin: ymin = tymin
        if ymax is None: ymax = tymax
        else:
            if tymax > ymax: ymax = tymax

    # Check that ymin and ymax are set, if not, return without plotting
    if ymin is None or ymax is None:
        msgs.warn("{0:s} fits were not plotted".format(pcatype))
        return
    # Generate the plots
    ndone=0
    for i in xrange(len(pages)):
        f, axes = plt.subplots(pages[i][1], pages[i][0])
        ipx, ipy = 0, 0
        for j in xrange(npp[i]):
            if pages[i][1] == 1: ind = (ipx)
            elif pages[i][0] == 1: ind = (ipy)
            else: ind = (ipy,ipx)
            w = np.where(tempcen[:,ndone]!=-999999.9)
            if np.size(w[0]) != 0:
                rowplt = binval*(0.5 + np.arange(tempcen.shape[0]))
                axes[ind].plot(rowplt[w],tempcen[:,ndone][w],'bx')
                axes[ind].plot(x0,cenwid[:,ndone],'r-')
            axes[ind].axis([0,binval*tempcen.shape[0],ymin,ymax])
            axes[ind].set_title("Order {0:d}".format(1+ndone))
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
            ndone += 1
        # Delete the unnecessary axes
        for j in xrange(npp[i],axes.size):
            if pages[i][1] == 1: ind = (ipx)
            elif pages[i][0] == 1: ind = (ipy)
            else: ind = (ipy,ipx)
            f.delaxes(axes[ind])
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        # Save the figure
        if pages[i][1] == 1 or pages[i][0] == 1: ypngsiz = 11.0/axes.size
        else: ypngsiz = 11.0*axes.shape[0]/axes.shape[1]
        f.set_size_inches(11.0, ypngsiz)
        f.tight_layout()
        if prefix != "":
            f.savefig("{0:s}/{1:s}_PCA_{2:s}_page-{3:d}.png".format(plotsdir,prefix,pcatype,i+1), dpi=200, orientation='landscape')
        else:
            f.savefig("{0:s}/PCA_{1:s}_page-{2:d}.png".format(plotsdir,pcatype,i+1), dpi=200, orientation='landscape')
    f.clf()
    del f
    return
Exemplo n.º 2
0
def pc_plot_extcenwid(tempcen,
                      cenwid,
                      binval,
                      plotsdir="Plots",
                      pcatype="<unknown>",
                      maxp=25,
                      prefix=""):
    """
    Saves a few output png files of the PCA analysis for the target centroid/width definition
    """
    npc = tempcen.shape[1]
    pages, npp = get_dimen(npc, maxp=maxp)
    x0 = binval * np.arange(cenwid.shape[0])
    # First calculate the min and max values for the plotting axes, to make sure they are all the same
    ymin, ymax = None, None
    """
    for i in xrange(npc):
        w = np.where(tempcen[:,i]!=-999999.9)
        if np.size(w[0]) == 0: continue
        medv = np.median(tempcen[:,i][w])
        madv = 1.4826*np.median(np.abs(medv-tempcen[:,i][w]))
        vmin, vmax = medv-3.0*madv, medv+3.0*madv
        tymin = min(vmin,np.min(cenwid[:,i]))
        tymax = max(vmax,np.max(cenwid[:,i]))
        if ymin is None: ymin = tymin
        else:
            if tymin < ymin: ymin = tymin
        if ymax is None: ymax = tymax
        else:
            if tymax > ymax: ymax = tymax
    """
    w = np.where(tempcen != -999999.9)
    if np.size(w[0]) != 0:
        medv = np.median(tempcen[w])
        madv = 1.4826 * np.median(np.abs(medv - tempcen[w]))
        vmin, vmax = medv - 3.0 * madv, medv + 3.0 * madv
        tymin = min(vmin, np.min(cenwid))
        tymax = max(vmax, np.max(cenwid))
        if ymin is None: ymin = tymin
        else:
            if tymin < ymin: ymin = tymin
        if ymax is None: ymax = tymax
        else:
            if tymax > ymax: ymax = tymax

    # Check that ymin and ymax are set, if not, return without plotting
    if ymin is None or ymax is None:
        msgs.warn("{0:s} fits were not plotted".format(pcatype))
        return
    # Generate the plots
    ndone = 0
    for i in xrange(len(pages)):
        f, axes = plt.subplots(pages[i][1], pages[i][0])
        ipx, ipy = 0, 0
        for j in xrange(npp[i]):
            if pages[i][1] == 1: ind = (ipx)
            elif pages[i][0] == 1: ind = (ipy)
            else: ind = (ipy, ipx)
            w = np.where(tempcen[:, ndone] != -999999.9)
            if np.size(w[0]) != 0:
                rowplt = binval * (0.5 + np.arange(tempcen.shape[0]))
                axes[ind].plot(rowplt[w], tempcen[:, ndone][w], 'bx')
                axes[ind].plot(x0, cenwid[:, ndone], 'r-')
            axes[ind].axis([0, binval * tempcen.shape[0], ymin, ymax])
            axes[ind].set_title("Order {0:d}".format(1 + ndone))
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
            ndone += 1
        # Delete the unnecessary axes
        for j in xrange(npp[i], axes.size):
            if pages[i][1] == 1: ind = (ipx)
            elif pages[i][0] == 1: ind = (ipy)
            else: ind = (ipy, ipx)
            f.delaxes(axes[ind])
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        # Save the figure
        if pages[i][1] == 1 or pages[i][0] == 1: ypngsiz = 11.0 / axes.size
        else: ypngsiz = 11.0 * axes.shape[0] / axes.shape[1]
        f.set_size_inches(11.0, ypngsiz)
        f.tight_layout()
        if prefix != "":
            f.savefig("{0:s}/{1:s}_PCA_{2:s}_page-{3:d}.png".format(
                plotsdir, prefix, pcatype, i + 1),
                      dpi=200,
                      orientation='landscape')
        else:
            f.savefig("{0:s}/PCA_{1:s}_page-{2:d}.png".format(
                plotsdir, pcatype, i + 1),
                      dpi=200,
                      orientation='landscape')
    f.clf()
    del f
    return
Exemplo n.º 3
0
def pc_plot(slf, inpar, ofit, maxp=25, pcadesc="", addOne=True):
    """
    Saves quality control plots for a PCA analysis
    """
    npc = inpar['npc']+1
    pages, npp = get_dimen(npc, maxp=maxp)
    x0 = inpar['x0']
    ordernum = inpar['x0in']
    x0fit = inpar['x0fit']
    usetrc = inpar['usetrc']
    hidden = inpar['hidden']
    high_fit = inpar['high_fit']
    nc = np.max(ordernum[usetrc])
    # Loop through all pages and plot the results
    ndone = 0
    for i in xrange(len(pages)):
        plt.clf()
        f, axes = plt.subplots(pages[i][1], pages[i][0])
        ipx, ipy = 0, 0
        if i == 0:
            if pages[i][1] == 1: ind = (0,)
            elif pages[i][0] == 1: ind = (0,)
            else: ind = (0,0)
            axes[ind].plot(ordernum[usetrc], x0[usetrc], 'bx')
            axes[ind].plot(ordernum, x0fit, 'k-')
            amn, amx = np.min(x0fit), np.max(x0fit)
            diff = x0[usetrc]-x0fit[usetrc]
            tdiffv = np.median(diff)
            mdiffv = 1.4826*np.median(np.abs(tdiffv-diff))
            amn -= 2.0*mdiffv
            amx += 2.0*mdiffv
            mval = amn-0.15*(amx-amn)
            dmin, dmax = tdiffv-2.0*mdiffv, tdiffv+2.0*mdiffv
            diff = mval + diff*0.20*(amx-amn)/(dmax-dmin)
            wign = np.where(np.abs(diff-np.median(diff))<4.0*1.4826*np.median(np.abs(diff-np.median(diff))))[0]
            dmin, dmax = np.min(diff[wign]), np.max(diff[wign])
            axes[ind].plot(ordernum[usetrc], diff, 'rx')
            if addOne:
                axes[ind].plot([0, nc+1], [mval,mval], 'k-')
                axes[ind].axis([0, nc+1, dmin-0.5*(dmax-dmin), amx + 0.05*(amx-amn)])
            else:
                axes[ind].plot([0, nc], [mval, mval], 'k-')
                axes[ind].axis([0, nc, dmin-0.5*(dmax-dmin), amx + 0.05*(amx-amn)])
            axes[ind].set_title("Mean Value")
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
            npp[0] -= 1
        for j in xrange(npp[i]):
            if pages[i][1] == 1: ind = (ipx,)
            elif pages[i][0] == 1: ind = (ipy,)
            else: ind = (ipy, ipx)
            axes[ind].plot(ordernum[usetrc], hidden[j+ndone,:], 'bx')
            axes[ind].plot(ordernum, high_fit[:,j+ndone], 'k-')
            vmin, vmax = np.min(hidden[j+ndone,:]), np.max(hidden[j+ndone,:])
            if ofit[1+j+ndone] != -1:
                cmn, cmx = np.min(high_fit[:,j+ndone]), np.max(high_fit[:,j+ndone])
                diff = hidden[j+ndone,:]-high_fit[:,j+ndone][usetrc]
                tdiffv = np.median(diff)
                mdiffv = 1.4826*np.median(np.abs(tdiffv-diff))
                cmn -= 2.0*mdiffv
                cmx += 2.0*mdiffv
                mval = cmn-0.15*(cmx-cmn)
                dmin, dmax = tdiffv-2.0*mdiffv, tdiffv+2.0*mdiffv
                #dmin, dmax = np.min(diff), np.max(diff)
                diff = mval + diff*0.20*(cmx-cmn)/(dmax-dmin)
                wign = np.where(np.abs(diff-np.median(diff))<4.0*1.4826*np.median(np.abs(diff-np.median(diff))))[0]
                dmin, dmax = np.min(diff[wign]), np.max(diff[wign])
                #vmin, vmax = np.min(hidden[j+ndone,:][wign]), np.max(hidden[j+ndone,:][wign])
                axes[ind].plot(ordernum[usetrc], diff, 'rx')
                axes[ind].plot([0, 1+nc], [mval, mval], 'k-')
#				ymin = np.min([(3.0*dmin-dmax)/2.0,vmin-0.1*(vmax-dmin),dmin-0.1*(vmax-dmin)])
#				ymax = np.max([np.max(high_fit[:,j+ndone]),vmax+0.1*(vmax-dmin),dmax+0.1*(vmax-dmin)])
                ymin = dmin-0.5*(dmax-dmin)
                ymax = cmx + 0.05*(cmx-cmn)
                if addOne: axes[ind].axis([0, nc+1, ymin, ymax])
                else: axes[ind].axis([0, nc, ymin, ymax])
            else:
                if addOne: axes[ind].axis([0, nc+1, vmin-0.1*(vmax-vmin), vmax+0.1*(vmax-vmin)])
                else: axes[ind].axis([0, nc, vmin-0.1*(vmax-vmin), vmax+0.1*(vmax-vmin)])
            axes[ind].set_title("PC {0:d}".format(j+ndone))
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        if i == 0: npp[0] = npp[0] + 1
        # Delete the unnecessary axes
        for j in xrange(npp[i], axes.size):
            if pages[i][1] == 1: ind = (ipx,)
            elif pages[i][0] == 1: ind = (ipy,)
            else: ind = (ipy, ipx)
            f.delaxes(axes[ind])
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        ndone += npp[i]
        # Save the figure
        if pages[i][1] == 1 or pages[i][0] == 1: ypngsiz = 11.0/axes.size
        else: ypngsiz = 11.0*axes.shape[0]/axes.shape[1]
        f.set_size_inches(11.0, ypngsiz)
        if pcadesc != "":
            pgtxt = ""
            if len(pages) != 1:
                pgtxt = ", page {0:d}/{1:d}".format(i+1, len(pages))
            f.suptitle(pcadesc + pgtxt, y=1.02, size=16)
        f.tight_layout()
        slf._qa.savefig(dpi=200, orientation='landscape', bbox_inches='tight')
        plt.close()
        f.clf()
    del f
    return
Exemplo n.º 4
0
def pc_plot(slf, inpar, ofit, maxp=25, pcadesc="", addOne=True):
    """
    Saves quality control plots for a PCA analysis
    """
    npc = inpar['npc'] + 1
    pages, npp = get_dimen(npc, maxp=maxp)
    x0 = inpar['x0']
    ordernum = inpar['x0in']
    x0fit = inpar['x0fit']
    usetrc = inpar['usetrc']
    hidden = inpar['hidden']
    high_fit = inpar['high_fit']
    nc = np.max(ordernum[usetrc])
    # Loop through all pages and plot the results
    ndone = 0
    for i in xrange(len(pages)):
        plt.clf()
        f, axes = plt.subplots(pages[i][1], pages[i][0])
        ipx, ipy = 0, 0
        if i == 0:
            if pages[i][1] == 1: ind = (0, )
            elif pages[i][0] == 1: ind = (0, )
            else: ind = (0, 0)
            axes[ind].plot(ordernum[usetrc], x0[usetrc], 'bx')
            axes[ind].plot(ordernum, x0fit, 'k-')
            amn, amx = np.min(x0fit), np.max(x0fit)
            diff = x0[usetrc] - x0fit[usetrc]
            tdiffv = np.median(diff)
            mdiffv = 1.4826 * np.median(np.abs(tdiffv - diff))
            amn -= 2.0 * mdiffv
            amx += 2.0 * mdiffv
            mval = amn - 0.15 * (amx - amn)
            dmin, dmax = tdiffv - 2.0 * mdiffv, tdiffv + 2.0 * mdiffv
            diff = mval + diff * 0.20 * (amx - amn) / (dmax - dmin)
            wign = np.where(
                np.abs(diff - np.median(diff)) < 4.0 * 1.4826 *
                np.median(np.abs(diff - np.median(diff))))[0]
            dmin, dmax = np.min(diff[wign]), np.max(diff[wign])
            axes[ind].plot(ordernum[usetrc], diff, 'rx')
            if addOne:
                axes[ind].plot([0, nc + 1], [mval, mval], 'k-')
                axes[ind].axis([
                    0, nc + 1, dmin - 0.5 * (dmax - dmin),
                    amx + 0.05 * (amx - amn)
                ])
            else:
                axes[ind].plot([0, nc], [mval, mval], 'k-')
                axes[ind].axis([
                    0, nc, dmin - 0.5 * (dmax - dmin), amx + 0.05 * (amx - amn)
                ])
            axes[ind].set_title("Mean Value")
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
            npp[0] -= 1
        for j in xrange(npp[i]):
            if pages[i][1] == 1: ind = (ipx, )
            elif pages[i][0] == 1: ind = (ipy, )
            else: ind = (ipy, ipx)
            axes[ind].plot(ordernum[usetrc], hidden[j + ndone, :], 'bx')
            axes[ind].plot(ordernum, high_fit[:, j + ndone], 'k-')
            vmin, vmax = np.min(hidden[j + ndone, :]), np.max(hidden[j +
                                                                     ndone, :])
            if ofit[1 + j + ndone] != -1:
                cmn, cmx = np.min(high_fit[:, j + ndone]), np.max(
                    high_fit[:, j + ndone])
                diff = hidden[j + ndone, :] - high_fit[:, j + ndone][usetrc]
                tdiffv = np.median(diff)
                mdiffv = 1.4826 * np.median(np.abs(tdiffv - diff))
                cmn -= 2.0 * mdiffv
                cmx += 2.0 * mdiffv
                mval = cmn - 0.15 * (cmx - cmn)
                dmin, dmax = tdiffv - 2.0 * mdiffv, tdiffv + 2.0 * mdiffv
                #dmin, dmax = np.min(diff), np.max(diff)
                diff = mval + diff * 0.20 * (cmx - cmn) / (dmax - dmin)
                wign = np.where(
                    np.abs(diff - np.median(diff)) < 4.0 * 1.4826 *
                    np.median(np.abs(diff - np.median(diff))))[0]
                dmin, dmax = np.min(diff[wign]), np.max(diff[wign])
                #vmin, vmax = np.min(hidden[j+ndone,:][wign]), np.max(hidden[j+ndone,:][wign])
                axes[ind].plot(ordernum[usetrc], diff, 'rx')
                axes[ind].plot([0, 1 + nc], [mval, mval], 'k-')
                #				ymin = np.min([(3.0*dmin-dmax)/2.0,vmin-0.1*(vmax-dmin),dmin-0.1*(vmax-dmin)])
                #				ymax = np.max([np.max(high_fit[:,j+ndone]),vmax+0.1*(vmax-dmin),dmax+0.1*(vmax-dmin)])
                ymin = dmin - 0.5 * (dmax - dmin)
                ymax = cmx + 0.05 * (cmx - cmn)
                if addOne: axes[ind].axis([0, nc + 1, ymin, ymax])
                else: axes[ind].axis([0, nc, ymin, ymax])
            else:
                if addOne:
                    axes[ind].axis([
                        0, nc + 1, vmin - 0.1 * (vmax - vmin),
                        vmax + 0.1 * (vmax - vmin)
                    ])
                else:
                    axes[ind].axis([
                        0, nc, vmin - 0.1 * (vmax - vmin),
                        vmax + 0.1 * (vmax - vmin)
                    ])
            axes[ind].set_title("PC {0:d}".format(j + ndone))
            ipx += 1
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        if i == 0: npp[0] = npp[0] + 1
        # Delete the unnecessary axes
        for j in xrange(npp[i], axes.size):
            if pages[i][1] == 1: ind = (ipx, )
            elif pages[i][0] == 1: ind = (ipy, )
            else: ind = (ipy, ipx)
            f.delaxes(axes[ind])
            if ipx == pages[i][0]:
                ipx = 0
                ipy += 1
        ndone += npp[i]
        # Save the figure
        if pages[i][1] == 1 or pages[i][0] == 1: ypngsiz = 11.0 / axes.size
        else: ypngsiz = 11.0 * axes.shape[0] / axes.shape[1]
        f.set_size_inches(11.0, ypngsiz)
        if pcadesc != "":
            pgtxt = ""
            if len(pages) != 1:
                pgtxt = ", page {0:d}/{1:d}".format(i + 1, len(pages))
            f.suptitle(pcadesc + pgtxt, y=1.02, size=16)
        f.tight_layout()
        slf._qa.savefig(dpi=200, orientation='landscape', bbox_inches='tight')
        plt.close()
        f.clf()
    del f
    return