Exemplo n.º 1
0
 def __del__(self):
     if self.pmml_model:
         try:
             from pypmml import Model
             Model.close()
         except:
             pass
Exemplo n.º 2
0
    def is_support(self):
        try:
            from pypmml import Model

            model_content = self.model
            if isinstance(model_content, (bytes, bytearray)):
                model_content = model_content.decode('utf-8')

            if isinstance(model_content, str):
                # Check if a file path
                if os.path.exists(model_content):
                    self.pmml_model = Model.fromFile(model_content)
                else:
                    self.pmml_model = Model.fromString(model_content)
                return True
            else:
                Model.close()
                return False
        except Exception as e:
            return False
Exemplo n.º 3
0
    def test_from_file(self):
        # The model is from here: http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml
        model = Model.fromFile('./resources/models/single_iris_dectree.xml')
        self.assertEqual(model.version, '4.1')

        app = model.header.application
        self.assertEqual(app.name, 'KNIME')
        self.assertEqual(app.version, '2.8.0')

        self.assertEqual(model.modelElement, 'TreeModel')
        self.assertEqual(model.functionName, 'classification')
        self.assertEqual(model.modelName, 'DecisionTree')
        self.assertEqual(model.algorithmName, None)

        self.assertEqual(
            model.inputNames,
            ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'])
        inputs = model.inputFields
        self.assertEqual(len(inputs), 4)
        self.assertEqual(inputs[0].name, 'sepal_length')
        self.assertEqual(inputs[0].dataType, 'double')
        self.assertEqual(inputs[0].opType, 'continuous')

        self.assertEqual(model.targetNames, ['class'])
        targets = model.targetFields
        self.assertEqual(len(targets), 1)
        self.assertEqual(targets[0].name, 'class')
        self.assertEqual(targets[0].dataType, 'string')
        self.assertEqual(targets[0].opType, 'nominal')
        self.assertEqual(model.classes,
                         ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])

        self.assertEqual(model.outputNames, [
            'predicted_class', 'probability', 'probability_Iris-setosa',
            'probability_Iris-versicolor', 'probability_Iris-virginica',
            'node_id'
        ])
        outputs = model.outputFields
        self.assertEqual(outputs[0].feature, 'predictedValue')
        self.assertEqual(outputs[1].feature, 'probability')
        self.assertEqual(outputs[1].value, None)
        self.assertEqual(outputs[2].feature, 'probability')
        self.assertEqual(outputs[2].value, 'Iris-setosa')
        self.assertEqual(outputs[3].feature, 'probability')
        self.assertEqual(outputs[3].value, 'Iris-versicolor')
        self.assertEqual(outputs[4].feature, 'probability')
        self.assertEqual(outputs[4].value, 'Iris-virginica')
        self.assertEqual(outputs[5].feature, 'entityId')

        # Data in dict
        result = model.predict({
            'sepal_length': 5.1,
            'sepal_width': 3.5,
            'petal_length': 1.4,
            'petal_width': 0.2
        })
        self.assertEqual(result['predicted_class'], 'Iris-setosa')
        self.assertEqual(result['probability'], 1.0)
        self.assertEqual(result['node_id'], '1')

        result = model.predict({
            'sepal_length': 7,
            'sepal_width': 3.2,
            'petal_length': 4.7,
            'petal_width': 1.4
        })
        self.assertEqual(result['predicted_class'], 'Iris-versicolor')
        self.assertEqual(result['probability'], 0.9074074074074074)
        self.assertEqual(result['node_id'], '3')

        # Data in json
        result = model.predict(
            '[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]'
        )
        self.assertEqual(
            result,
            '[{"node_id":"1","probability_Iris-setosa":1.0,"predicted_class":"Iris-setosa","probability_Iris-virginica":0.0,"probability_Iris-versicolor":0.0,"probability":1.0}]'
        )

        result = model.predict(
            '{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[7, 3.2, 4.7, 1.4]]}'
        )
        self.assertEqual(
            result,
            '{"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-versicolor",0.9074074074074074,0.0,0.9074074074074074,0.09259259259259259,"3"]]}'
        )

        # Data in list
        result = model.predict([5.1, 3.5, 1.4, 0.2])
        self.assertEqual(result[0], 'Iris-setosa')
        self.assertEqual(result[1], 1.0)
        self.assertEqual(result[2], 1.0)
        self.assertEqual(result[3], 0.0)
        self.assertEqual(result[4], 0.0)
        self.assertEqual(result[5], '1')

        # Data in list of list
        result = model.predict([[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]])
        self.assertEqual(len(result), 2)
        self.assertEqual(result[0][0], 'Iris-setosa')
        self.assertEqual(result[0][1], 1.0)
        self.assertEqual(result[0][2], 1.0)
        self.assertEqual(result[0][3], 0.0)
        self.assertEqual(result[0][4], 0.0)
        self.assertEqual(result[0][5], '1')
        self.assertEqual(result[1][0], 'Iris-versicolor')
        self.assertEqual(result[1][1], 0.9074074074074074)
        self.assertEqual(result[1][2], 0.0)
        self.assertEqual(result[1][3], 0.9074074074074074)
        self.assertEqual(result[1][4], 0.09259259259259259)
        self.assertEqual(result[1][5], '3')

        # Data in numpy

        # Shutdown the gateway
        Model.close()