Exemplo n.º 1
0
def point_trajectory_given_modes_and_central_traj(x_traj,list_of_cells,goal,eps=0,scale=[]):
    """
    Description: 
        Point Trajectory Optimization with the ordered list of polytopes given
        This is a convex program as mode sequence is already given
        list_of_cells: each cell has the following attributes: A,B,c, and polytope(H,h)
    """
    model=Model("Fixed Mode Polytopic Trajectory")
    T=len(list_of_cells)
    n,m=list_of_cells[0].B.shape
    x=model.addVars(range(T+1),range(n),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="x")
    u=model.addVars(range(T),range(m),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="u")
    model.update()
    if len(scale)==0:
        scale=np.ones(x_traj[0].shape[0])    
    print "inside function epsilon is",eps
    for j in range(n):
        model.addConstr(x[0,j]<=x_traj[0][j]+eps*scale[j])
        model.addConstr(x[0,j]>=x_traj[0][j]-eps*scale[j])

    for t in range(T):
        cell=list_of_cells[t]
        A,B,c,_p=cell.A,cell.B,cell.c,cell.p
        for j in range(n):
            expr_x=LinExpr([(A[j,k],x[t,k]) for k in range(n)])
            expr_u=LinExpr([(B[j,k],u[t,k]) for k in range(m)])
            model.addConstr(x[t+1,j]==expr_x+expr_u+c[j,0])
        x_t=np.array([x[t,j] for j in range(n)]).reshape(n,1)
        u_t=np.array([u[t,j] for j in range(m)]).reshape(m,1)
        xu=np.vstack((x_t,u_t))
        subset_LP(model,xu,np.zeros((n+m,1)),Ball(1),_p)


    x_T=np.array([x[T,j] for j in range(n)]).reshape(n,1)
    z=zonotope(x_T,np.zeros((n,1)))
    subset_generic(model,z,goal)
    # Cost function
    J=QuadExpr()
    for t in range(T):
        for i in range(n):
            J.add(x[t,i]*x[t,i]-x[t,i]*x_traj[t][i])
    model.setObjective(J)
    model.write("polytopic_trajectory.lp")
    model.setParam('TimeLimit', 150)
    model.optimize()
    x_num,u_num={},{}
    for t in range(T+1):
        x_num[t]=np.array([[x[t,j].X] for j in range(n)])
    for t in range(T):
        u_num[t]=np.array([[u[t,i].X] for i in range(m) ])
    return (x_num,u_num)
Exemplo n.º 2
0
def RCI(sys, q=0, alpha=0, K=5):
    """
    Computes a Robust Control Invariant (RCI) set for LTI system sys
    """
    q = K * sys.n if q == 0 else q
    model = Model("RCI")
    phi = tupledict_to_array(
        model.addVars(range(sys.n),
                      range(q),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="phi"))
    theta = tupledict_to_array(
        model.addVars(range(sys.m),
                      range(q),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="theta"))
    psi = tupledict_to_array(
        model.addVars(range(sys.n),
                      range(sys.w),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="psi"))
    model.update()
    _fat_matrix = np.hstack((psi, phi))
    constraints_list_of_tuples(model, [(sys.A, phi), (sys.B, theta),
                                       (-np.eye(sys.n), _fat_matrix[:, 0:q])],
                               "=")
    constraints_list_of_tuples(model,
                               [(np.eye(sys.n), sys.W),
                                (-np.eye(sys.n), _fat_matrix[:, q:q + sys.w])],
                               "=")
    _outer = zonotope(np.zeros((sys.n, 1)), sys.W * alpha)
    _inner = zonotope(np.zeros((sys.n, 1)), psi)
    subset_generic(model, _inner, _outer)
    if sys.X != None:
        sys.X.G *= (1 - alpha)
        subset_generic(model, zonotope(np.zeros((sys.n, 1)), phi), sys.X)
    if sys.U != None:
        sys.U.G *= (1 - alpha)
        subset_generic(model, zonotope(np.zeros((sys.m, 1)), theta), sys.U)
    model.optimize()
    phi_n = np.array([[phi[i, j].X for i in range(phi.shape[0])]
                      for j in range(phi.shape[1])]).T
    theta_n = np.array([[theta[i, j].X for i in range(theta.shape[0])]
                        for j in range(theta.shape[1])]).T
    #    psi_n=np.array([[psi[i,j].X for i in range(psi.shape[0])] for j in range(psi.shape[1])]).T
    sys.phi = phi_n * 1.0 / (1 - alpha)
    sys.theta = theta_n * 1.0 / (1 - alpha)
    return phi_n, theta_n
Exemplo n.º 3
0
def RCI_periodic(sys, q=0, alpha=0, K=5):
    """
    Computes a Robust Control Invariant (RCI) set for Linear Periodic Systems
    """
    model = Model("RCI_periodic")
    q = K * sys.n if q == 0 else q
    n_w = sys.n_w
    T = sys.T + 1
    n = sys.n
    m = sys.m
    list_of_q = list(q + np.array(range(T)) * n_w)
    print list_of_q
    G, theta = {}, {}
    for t in range(T):
        _q = list_of_q[t]
        G[t] = model.addVars(range(n),
                             range(_q),
                             lb=-GRB.INFINITY,
                             ub=GRB.INFINITY,
                             name="G_%d" % t)
        theta[t] = model.addVars(range(T),
                                 range(_q),
                                 lb=-GRB.INFINITY,
                                 ub=GRB.INFINITY,
                                 name="theta_%s" % t)
    _q = list_of_q[T - 1] + n_w
    G[T] = model.addVars(range(n),
                         range(_q),
                         lb=-GRB.INFINITY,
                         ub=GRB.INFINITY,
                         name="G_%d" % T)
    model.update()
    for t in range(T):
        print "adding constraints of t", t
        A, B, W = sys.A[t], sys.B[t], sys.W[t]
        _q = list_of_q[t]
        for i in range(n):
            for j in range(_q):
                expr_x = LinExpr([(A[i, k], G[t][k, j]) for k in range(n)])
                expr_u = LinExpr([(B[i, k], theta[t][k, j]) for k in range(m)])
                model.addConstr(G[t + 1][i, j] == expr_x + expr_u)
            for j in range(_q, _q + n_w):
                model.addConstr(G[t + 1][i, j] == W[i, j - _q])
        G_t = np.array([G[t][i, j] for i in range(n)
                        for j in range(_q)]).reshape(n, _q)
        theta_t = np.array([
            theta[t][i, j] for i in range(m) for j in range(_q)
        ]).reshape(m, _q)
        X_t = zonotope(np.zeros((n, 1)), G_t)
        U_t = zonotope(np.zeros((m, 1)), theta_t)
        subset_generic(model, X_t, sys.X)
        subset_generic(model, U_t, sys.U)

    _q = list_of_q[T - 1] + n_w
    for i in range(n):
        for j in range(q):
            model.addConstr(G[T][i, j + n_w * (T)] == G[0][i, j])
        for j in range(0, n_w * (T)):
            model.addConstr(G[T][i, j] == 0)
    # Cost function
    J = LinExpr([(1.0 / (t + 1.1), G[t][i, i]) for t in range(T + 1)
                 for i in range(n)])
    model.setObjective(J)
    model.write("peridoic RCI.lp")
    model.setParam('TimeLimit', 150)
    model.optimize()
    G_num, theta_num = {}, {}
    for t in range(T):
        _q = list_of_q[t]
        G_num[t] = np.array([[G[t][i, j].X] for i in range(n)
                             for j in range(_q)]).reshape(n, _q)
    _q = list_of_q[t] + n_w
    G_num[T] = np.array([[G[T][i, j].X] for i in range(n)
                         for j in range(_q)]).reshape(n, _q)
    for t in range(T):
        _q = list_of_q[t]
        theta_num[t] = np.array([[theta[t][i, j].X] for i in range(m)
                                 for j in range(_q)]).reshape(m, _q)
    return (G_num, theta_num)

    q = K * sys.n if q == 0 else q
    model = Model("RCI_periodic")
    phi = tupledict_to_array(
        model.addVars(range(sys.n),
                      range(q),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="phi"))
    theta = tupledict_to_array(
        model.addVars(range(sys.m),
                      range(q),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="theta"))
    psi = tupledict_to_array(
        model.addVars(range(sys.n),
                      range(sys.w),
                      lb=-GRB.INFINITY,
                      ub=GRB.INFINITY,
                      name="psi"))
    model.update()
    _fat_matrix = np.hstack((psi, phi))
    constraints_list_of_tuples(model, [(sys.A, phi), (sys.B, theta),
                                       (-np.eye(sys.n), _fat_matrix[:, 0:q])],
                               "=")
    constraints_list_of_tuples(model,
                               [(np.eye(sys.n), sys.W),
                                (-np.eye(sys.n), _fat_matrix[:, q:q + sys.w])],
                               "=")
    _outer = zonotope(np.zeros((sys.n, 1)), sys.W * alpha)
    _inner = zonotope(np.zeros((sys.n, 1)), psi)
    subset_generic(model, _inner, _outer)
    if sys.X != None:
        sys.X.G *= (1 - alpha)
        subset_generic(model, zonotope(np.zeros((sys.n, 1)), phi), sys.X)
    if sys.U != None:
        sys.U.G *= (1 - alpha)
        subset_generic(model, zonotope(np.zeros((sys.m, 1)), theta), sys.U)
    model.optimize()
    phi_n = np.array([[phi[i, j].X for i in range(phi.shape[0])]
                      for j in range(phi.shape[1])]).T
    theta_n = np.array([[theta[i, j].X for i in range(theta.shape[0])]
                        for j in range(theta.shape[1])]).T
    #    psi_n=np.array([[psi[i,j].X for i in range(psi.shape[0])] for j in range(psi.shape[1])]).T
    sys.phi = phi_n * 1.0 / (1 - alpha)
    sys.theta = theta_n * 1.0 / (1 - alpha)
    return phi_n, theta_n
Exemplo n.º 4
0
def disturbed_polytopic_trajectory_given_regions(x0,list_of_cells,goal,eps=0,order=1,scale=[]):
    """
    Description: 
        Polytopic Trajectory Optimization with the ordered list of polytopes given
        This is a convex program as mode sequence is already given
        list_of_cells: each cell has the following attributes: A,B,c,W and an AH-polytope
    """
    if len(scale)==0:
        scale=np.ones(x0.shape[0])
    model=Model("Fixed Mode Polytopic Trajectory")
    T=len(list_of_cells)
    n,m=list_of_cells[0].B.shape
    q=int(order*n)
    n_w=list_of_cells[0].w.G.shape[1]
    list_of_q=list(q+np.array(range(T))*n_w)
    print list_of_q
    x=model.addVars(range(T+1),range(n),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="x")
    u=model.addVars(range(T),range(m),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="u")
    G,theta={},{}
    for t in range(T):
        _q=list_of_q[t]
        G[t]=model.addVars(range(n),range(_q),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="G_%d"%t)
        theta[t]=model.addVars(range(T),range(_q),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="theta_%s"%t)
    _q=list_of_q[T-1]+n_w
    G[T]=model.addVars(range(n),range(_q),lb=-GRB.INFINITY,ub=GRB.INFINITY,name="G_%d"%T)
    model.update()
    print "inside function epsilon is",eps
    for j in range(n):
        model.addConstr(x[0,j]<=x0[j,0]+eps*scale[j])
        model.addConstr(x[0,j]>=x0[j,0]-eps*scale[j])

    for t in range(T):
        print "adding constraints of t",t
        cell=list_of_cells[t]
        A,B,w,p_x,p_u=cell.A,cell.B,cell.w,cell.p_x,cell.p_u
        _q=list_of_q[t]
        for j in range(n):
            expr_x=LinExpr([(A[j,k],x[t,k]) for k in range(n)])
            expr_u=LinExpr([(B[j,k],u[t,k]) for k in range(m)])
            model.addConstr(x[t+1,j]==expr_x+expr_u+w.x[j,0])
        for i in range(n):
            for j in range(_q):
                expr_x=LinExpr([(A[i,k],G[t][k,j]) for k in range(n)])
                expr_u=LinExpr([(B[i,k],theta[t][k,j]) for k in range(m)])
                model.addConstr(G[t+1][i,j]==expr_x+expr_u)
            for j in range(_q,_q+n_w):
                model.addConstr(G[t+1][i,j]==w.G[i,j-_q])
        x_t=np.array([x[t,j] for j in range(n)]).reshape(n,1)
        u_t=np.array([u[t,j] for j in range(m)]).reshape(m,1)
        G_t=np.array([G[t][i,j] for i in range(n) for j in range(_q)]).reshape(n,_q)
        theta_t=np.array([theta[t][i,j] for i in range(m) for j in range(_q)]).reshape(m,_q)
        X_t=zonotope(x_t,G_t)
        U_t=zonotope(u_t,theta_t)
        subset_generic(model,X_t,p_x)
        subset_generic(model,U_t,p_u)

    _q=list_of_q[T-1]+n_w
    x_T=np.array([x[T,j] for j in range(n)]).reshape(n,1)
    G_T=np.array([G[T][i,j] for i in range(n) for j in range(_q)]).reshape(n,_q)
    z=zonotope(x_T,G_T)
    subset_zonotopes(model,z,goal)
    # Cost function
    J=LinExpr([(1.0/scale[i],G[t][i,i]) for t in range(T+1) for i in range(n)])
    model.setObjective(J)
    model.write("polytopic_trajectory.lp")
    model.setParam('TimeLimit', 150)
    model.optimize()
    x_num,G_num,theta_num,u_num={},{},{},{}
    for t in range(T):
        x_num[t]=np.array([[x[t,j].X] for j in range(n)]).reshape(n,1)
        _q=list_of_q[t]
        G_num[t]=np.array([[G[t][i,j].X] for i in range(n) for j in range(_q)]).reshape(n,_q)
    _q=list_of_q[t]+n_w
    x_num[T]=np.array([[x[T,j].X] for j in range(n)]).reshape(n,1)
    G_num[T]=np.array([[G[T][i,j].X] for i in range(n) for j in range(_q)]).reshape(n,_q)
    for t in range(T):
        _q=list_of_q[t]
        theta_num[t]=np.array([[theta[t][i,j].X] for i in range(m) for j in range(_q)]).reshape(m,_q)
        u_num[t]=np.array([[u[t,i].X] for i in range(m) ]).reshape(m,1)
    return (x_num,u_num,G_num,theta_num)