Exemplo n.º 1
0
def dev__filter_by_cost_function():
    print(80*'-')
    print('{:^80}'.format('filter_by_cost_functio'))
    
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    weights = o.get_weights_by_z_error_normalization()
    pct_to_keep = 0.95
    is_survive_idx,filter_info = o.filter_by_cost_function(
            loss_function_type='abs_error',
            cost_function_type='weighted_sum',
            weights=weights,
            pct_to_keep=pct_to_keep
    )
    print('type(is_survive_idx):{}'.format(type(is_survive_idx)))
    print('type(cost_function_info:{}'.format(type(filter_info)))

    assert isinstance(is_survive_idx,set)
    assert isinstance(filter_info,OrderedDict)

    print('<---- START: str__filter_by_cost_function_filter_info')
    print(o.str__filter_by_cost_function_filter_info(filter_info=filter_info))
    print('<---- END: str__filter_by_cost_function_filter_info')
Exemplo n.º 2
0
def dev__filter_by_qoi_constraints():
    print(80*'-')
    print('{:^80}'.format('filter_by_qoi_constraints'))
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)
    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)

    #for k,v in o.qoi_constraints.items():
    #    print(k,v)
    #for k,v in o.configuration.qoi_constraints.items():
    #    print(k,v)

    if 'qoi_constraints' not in o.configuration.qoi_constraints:
        m = "cannot test for qoi_constraints because it is not defined in the configuration file"
        print(m)
        return
    else:
        is_survive_idx,qoi_constraint_info = o.filter_by_qoi_constraints()

    print('type(is_survive_idx):{}'.format(type(is_survive_idx)))
    assert isinstance(is_survive_idx,set)
    print('type(qoi_constraint_info:{}'.format(type(qoi_constraint_info)))
    assert isinstance(qoi_constraint_info,OrderedDict)
    print(o.str__qoi_constraint_info(qoi_constraint_info=qoi_constraint_info))
def dev__get_descriptive_statistics__from_kde_file():
    print(80 * '-')
    print(
        '{:^80}'.format('method -> get_descriptive_statistics__from_kde_file'))

    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']
    kde_data_fn = testing_set['kde_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)
    assert os.path.isfile(kde_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,
                             results_data_fn=results_data_fn)

    kde_data = PyposmatDataFile()
    kde_data.read(filename=kde_data_fn)

    descriptive_statistics = o.get_descriptive_statistics(df=kde_data.df)

    print(
        o.str__descriptive_statistics(
            descriptive_statistics=descriptive_statistics))
    print(kde_data.df.shape)
def test__calculate_pareto_set(self,df=None,fn_out=None,sz=500):
    rscs=testing_resources()
    fn_data=rscs['fn_data']

    pda=PyposmatDataAnalyzer()
    pda.read_data_file(filename=fn_data)

    assert type(pda.datafile) is PyposmatDataFile
def test__read_data_file__validpath():
    rscs=testing_resources()
    fn_data=rscs['fn_data']

    pda=PyposmatDataAnalyzer()
    pda.read_data_file(filename=fn_data)

    assert type(pda.datafile) is PyposmatDataFile
def test__read_configuration_file__validpath():
    rscs=testing_resources()
    fn_config=rscs['fn_config']

    pda=PyposmatDataAnalyzer()
    pda.read_configuration_file(filename=fn_config)

    assert type(pda.configuration) is PyposmatConfigurationfile
Exemplo n.º 7
0
def test__filter_by_qoi_constraints():
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    is_survive_idx,qoi_constraint_info = o.filter_by_qoi_constraints()

    assert isinstance(is_survive_idx,set)
    assert isinstance(qoi_constraint_info,OrderedDict)
Exemplo n.º 8
0
def test__filter_by_pareto_set_membership():
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    is_survive_idx,pareto_set_info = o.filter_by_pareto_membership()

    assert all([isinstance(v,int) for v in is_survive_idx])
    assert isinstance(is_survive_idx,set)
    assert isinstance(pareto_set_info,OrderedDict)
Exemplo n.º 9
0
def dev__analyze_results():
    print(80*'-')
    print('{:^80}'.format('method -> analyze_results'))

    testing_set = get_testing_set()
    i_iteration = testing_set['i_iteration']
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    o.analyze_results(i_iteration=i_iteration)
Exemplo n.º 10
0
def test__analyze_results():

    testing_set = get_testing_set()
    i_iteration = testing_set['i_iteration']
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    is_survive_idx,filter_info = o.analyze_results(i_iteration=i_iteration)

    assert isinstance(is_survive_idx,set)
    assert isinstance(filter_info,OrderedDict)
Exemplo n.º 11
0
def dev__analyze_results():
    print(80*'-')
    print('{:^80}'.format('method -> analyze_results'))

    testing_set = get_testing_set()
    i_iteration = testing_set['i_iteration']
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    is_survive_idx,filter_info = o.analyze_results(i_iteration=i_iteration)

    print('type(is_survive_idx):{}'.format(str(type(is_survive_idx))))
    print('type(filter_info):{}'.format(str(type(filter_info))))
Exemplo n.º 12
0
def dev__get_descriptive_statistics():
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    descriptive_statistics = o.get_descriptive_statistics()

    assert isinstance(descriptive_statistics,OrderedDict)
    assert 'qois' in descriptive_statistics
    for qn in o.qoi_names:
        assert qn in descriptive_statistics['qois']

    print(o.str__descriptive_statistics(descriptive_statistics=descriptive_statistics))
Exemplo n.º 13
0
def dev_get_weights_by_qoi_target_normalization():
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    weights = o.get_weights_by_qoi_target_normalization()

    assert isinstance(weights,OrderedDict)
    for k,v in weights.items():
        assert k in o.qoi_names
        assert isinstance(v,float)
   
    print(o.str__cost_function_weights(weights=weights))
def test__write_kde_file():
    o = PyposmatDataAnalyzer()
    o.read_configuration(filename=pyposmat_config_fn)
    o.read_data(filename=pyposmat_data_fn)
    o.write_kde_file(filename=pyposmat_kde_fn)

    assert os.path.isfile(pyposmat_kde_fn)

    # cleanup
    os.remove(pyposmat_kde_fn)
Exemplo n.º 15
0
def get_best_parameterization(config_fn,data_fn,metric_name='d_metric',o_config=None,o_data=None):
    _analyzer = PyposmatDataAnalyzer()
    _analyzer.read_configuration_file(filename=config_fn)
    _analyzer.read_data_file(filename=data_fn)

    # calculate the scoring metric
    if metric_name is 'd_metric':
        _df = _analyzer.calculate_d_metric(df=_analyzer.datafile.df)
    else:
        s = "The metric name {} is unsupported"
        s = s.format(metric_name)
        raise PyposmatUnsupportedPotentialScoringMetric(s)

    _data = PyposmatDataFile()
    _data.read(filename=data_fn)
    _data.df = _df
    _data.subselect_by_score(score_name='d_metric',n=1)

    _free_parameter_names = _analyzer.configuration.free_parameter_names
    
    _parameter_best_dict = OrderedDict()
    for pn in _free_parameter_names:
        _parameter_best_dict[pn] = _data.sub_parameter_df.iloc[0][pn]

    return _parameter_best_dict
Exemplo n.º 16
0
def test__property__n_potentials_start():
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    o = PyposmatDataAnalyzer(config_fn=config_fn,
                             results_data_fn=results_data_fn)

    assert isinstance(o.n_potentials_start, int)
Exemplo n.º 17
0
def dev__filter_by_pareto_set_membership():
    print(80*'-')
    print('{:^80}'.format('filter_by_pareto_membership'))
    
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    assert os.path.isfile(config_fn)
    assert os.path.isfile(results_data_fn)

    o = PyposmatDataAnalyzer(config_fn=config_fn,results_data_fn=results_data_fn)
    is_survive_idx,pareto_set_info = o.filter_by_pareto_membership()

    print(is_survive_idx)
    assert all([isinstance(v,int) for v in is_survive_idx])
    assert isinstance(is_survive_idx,set)
    assert isinstance(pareto_set_info,OrderedDict)
    print('type(is_survive_idx):{}'.format(type(is_survive_idx)))
    print('type(pareto_set_info):{}'.format(type(pareto_set_info)))
 def __load_results_files(self,src_dir):
     PYPOSPACK_RESULTS_FN_FMT="pyposmat.results.{}.out"
     for i in range(self.n_iterations):
         fn=os.path.join(src_dir,PYPOSPACK_RESULTS_FN_FMT.format(i))
         print('reading {}...'.format(fn))
         self.iteration[i]['results']=PyposmatDataAnalyzer()
         self.iteration[i]['results'].read_configuration_file(filename=self.fn_config)
         try:
             self.iteration[i]['results'].read_data_file(filename=fn)
         except FileNotFoundError as e:
             self.iteration[i]['results'] = None
Exemplo n.º 19
0
def dev__property__n_potentials_start():
    print(80 * '-')
    print('{:^80}'.format('property -> n_potentials_start'))
    testing_set = get_testing_set()
    config_fn = testing_set['config_fn']
    results_data_fn = testing_set['results_fn']

    o = PyposmatDataAnalyzer(config_fn=config_fn,
                             results_data_fn=results_data_fn)

    print("type(o.n_potentials_start)):{}".format(type(o.n_potentials_start)))
    print("o.n_potentials_start:{}".format(o.n_potentials_start))
Exemplo n.º 20
0
def dev__write_kde_file():
    kde_data_fn = 'pyposmat.kde.test.out'

    try:
        os.remove(kde_data_fn)
    except FileNotFoundError as e:
        pass

    testing_set = get_testing_set()

    o = PyposmatDataAnalyzer()
    o.initialize_configuration(config_fn=testing_set['config_fn'])
    o.initialize_results_data(results_data_fn=testing_set['results_data_fn'])
    is_survive_idx, filter_info = o.analyze_results(
        i_iteration=testing_set['i_iteration'])

    o.write_kde_file(filename=kde_data_fn)

    print(o.kde_data.df['sim_id'])
Exemplo n.º 21
0
    def analyze_results(self, i_iteration):
        data_fn = os.path.join(\
                self.root_directory,
                self.data_directory,
                'pyposmat.results.{}.out'.format(i_iteration))
        config_fn = os.path.join(\
                self.root_directory,
                self.configuration_filename)
        kde_fn = os.path.join(\
                self.root_directory,
                self.data_directory,
                'pyposmat.kde.{}.out'.format(i_iteration+1))

        data_analyzer = PyposmatDataAnalyzer()
        data_analyzer.read_configuration_file(filename=config_fn)
        data_analyzer.read_data_file(filename=data_fn)
        data_analyzer.write_kde_file(filename=kde_fn)
def test____init____path_arguments():
    rscs=testing_resources()
    fn_config=rscs['fn_config']
    fn_data=rscs['fn_data']
    
    pda=PyposmatDataAnalyzer(
            fn_config=fn_config,
            fn_data=fn_data)

    assert type(pda) is PyposmatDataAnalyzer
    assert type(pda.configuration) is PyposmatConfigurationFile
    assert type(pda.datafile) is PyposmatDataFile
    assert type(pda.df) is pd.DataFrame
    assert type(pda.parameter_names) is list
    assert type(pda.error_names) is list
    assert type(pda.qoi_names) is list
    assert type(pda.names) is list
Exemplo n.º 23
0
def get_parameter_variance(
        config_fn,data_fn,
        metric_name='d_metric',
        n=100,
        o_config=None,
        o_data=None):
    """
    Args:
        config_fn (str):
        data_fn (str):
        metric_name (str):  (default:d_metric)
        n (int): the number of best metric values
        o_config (pypospack.config.data.PyposmatConfigurationFile)
        o_data (pypospack.config.data.PyposmatDataFile)
    Returns:
        collections.OrderedDict
    Raises:
        PyposmatUnknownPotentialScoringMetric
    """

    _analyzer = PyposmatDataAnalyzer()
    _analyzer.read_configuration_file(filename=config_fn)
    _analyzer.read_data_file(filename=data_fn)
   
    # calculate the scoring metric
    if metric_name is 'd_metric':
        _df = _analyzer.calculate_d_metric(df=_analyzer.datafile.df)
    else:
        s = "The metric name {} is unsupported"
        s = s.format(metric_name)
        raise PyposmatUnsupportedPotentialScoringMetric(s)

    _data = PyposmatDataFile()
    _data.read(filename=data_fn)
    _data.df = _df
    _data.subselect_by_score(score_name='d_metric',n=n)

    _param_std_df = _data.sub_parameter_df.std(axis=0)
   
    _parameter_std_dict = OrderedDict()
    for pn in _analyzer.parameter_names:
        _parameter_std_dict[pn] =_param_std_df.to_dict()[pn]
    
    return _parameter_std_dict
Exemplo n.º 24
0
import numpy as np
from pypospack.pyposmat.data import PyposmatDataFile, PyposmatDataAnalyzer

if __name__ == "__main__":
    import os
    import pypospack.utils
    _pypospack_root = pypospack.utils.get_pypospack_root_directory()
    _data_in_directory = os.path.join(
        _pypospack_root, 'examples',
        'Ni__eam__born_exp_fs__sensitivityanalysis',
        'data__from_pareto_optimization')
    _pyposmat_data_fn = os.path.join(_data_in_directory, 'pyposmat.kde.6.out')
    _pyposmat_config_fn = os.path.join(_data_in_directory,
                                       'pyposmat.config.in')

    analyzer = PyposmatDataAnalyzer()
    analyzer.read_configuration_file(filename=_pyposmat_config_fn)
    analyzer.read_data_file(filename=_pyposmat_data_fn)
    df = analyzer.calculate_d_metric(df=analyzer.datafile.df)

    data = PyposmatDataFile()
    data.read(filename=_pyposmat_data_fn)
    data.df = df
    data.subselect_by_score(score_name="d_metric", n=100)
    # print(data.sub_df)

    param_stdev_df = data.sub_parameter_df.std(axis=0)
    param_mean_df = data.sub_parameter_df.mean(axis=0)
    print("parameter standard deviations:\n{}".format(param_stdev_df))
    print("parameter means:\n{}".format(param_mean_df))
def test__read_data():
    o = PyposmatDataAnalyzer()
    o.read_data(filename=pyposmat_data_fn)

    assert type(o.data) is PyposmatDataFile
Exemplo n.º 26
0
    configuration.qoi_constraints = config.qoi_constraints
    configuration.structures = config.structure_db
    configuration.potential = config.potential_formalism
    configuration.sampling_type = config.sampling
    configuration.sampling_distribution = config.parameter_distribution
    configuration.sampling_constraints = config.parameter_constraints
    #<------------- write configuration file
    configuration.write(filename=_configuration_filename)
    #--------------------------------------------------------------------------
    # TEST CONFIGURATION FILE
    #--------------------------------------------------------------------------
    configuration.read(filename=_configuration_filename)

    #--------------------------------------------------------------------------
    # ANALYZE DATA
    #--------------------------------------------------------------------------
    data_directory = 'data'
    pyposmat_data_filename = 'pyposmat.results.9.out'
    pyposmat_configuration_filename = 'pyposmat.config.in'
    data_analyzer = PyposmatDataAnalyzer()
    data_analyzer.read_configuration_file(
        filename=pyposmat_configuration_filename)
    data_analyzer.read_data_file(
        filename=os.path.join(data_directory, pyposmat_data_filename))

    #data_analyzer.filter_performance_requirements()
    #data_analyzer.calculate_pareto_set()

    data_analyzer.write_kde_file(filename='pyposmat.kde.out')
    exit()
Exemplo n.º 27
0
import yaml
import pypospack.utils
from pypospack.io.filesystem import OrderedDictYAMLLoader
from pypospack.pyposmat.data import PyposmatConfigurationFile
from pypospack.pyposmat.data import PyposmatDataFile
from pypospack.pyposmat.data import PyposmatDataAnalyzer

data_directory = os.path.join(pypospack.utils.get_pypospack_root_directory(),
                              'data', 'Si__sw__data', 'pareto_optimization_1')
config_fn = os.path.join(data_directory, 'pyposmat.config.in')
analysis_fn = 'pyposmat.analysis.out'

assert os.path.isdir(data_directory)
assert os.path.isfile(config_fn)

o = PyposmatDataAnalyzer()
o.initialize_configuration(config_fn=config_fn)

n_iterations = o.configuration.n_iterations
print("n_iterations:{}".format(n_iterations))

# read analysis results to file system
if os.path.isfile(analysis_fn):
    with open(analysis_fn, 'r') as f:
        analysis_results = yaml.load(f, OrderedDictYAMLLoader)
else:
    analysis_results = OrderedDict()

for i in range(n_iterations):
    if i not in analysis_results:
        print('i_iteration:{}'.format(i))
Exemplo n.º 28
0
    def analyze_results(self,
                        i_iteration,
                        data_fn=None,
                        config_fn=None,
                        kde_fn=None,
                        analysis_fn=None):
        """ analyze the results of the simulation

        this method analyzes the results of the simulation, and does post simulation
        tasks, such as filtering by qoi performance, pareto optimization, etc.

        Args:
            data_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
            config_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
            kde_fn(str): the path of the data file.  By default this is set to none 
                where the the file will be determine by i_iteration and internal 
                attributes
        """

        if data_fn is None:
            data_fn = os.path.join(\
                    self.root_directory,
                    self.data_directory,
                    'pyposmat.results.{}.out'.format(i_iteration))
        if config_fn is None:
            config_fn = os.path.join(\
                    self.root_directory,
                    self.configuration_filename)
        if kde_fn is None:
            kde_fn = os.path.join(\
                    self.root_directory,
                    self.data_directory,
                    'pyposmat.kde.{}.out'.format(i_iteration+1))
        if analysis_fn is None:
            analysis_fn = os.path.join(self.root_directory,
                                       self.data_directory,
                                       'pyposmat.analysis.out')

        data_analyzer = PyposmatDataAnalyzer()
        data_analyzer.initialize_configuration(config_fn=config_fn)

        data_analyzer.analyze_results_data(i_iteration, filename=data_fn)

        assert isinstance(data_analyzer.results_statistics, OrderedDict)

        if os.path.isfile(analysis_fn):
            data_analyzer.read_analysis_file(filename=analysis_fn)

        self.log(
            data_analyzer.str__results_descriptive_statistics(
                statistics=data_analyzer.results_statistics))
        self.log(data_analyzer.str__qoi_filtering_summary())

        data_analyzer.write_kde_file(filename=kde_fn)
        data_analyzer.analyze_kde_data(i_iteration, filename=kde_fn)

        assert isinstance(data_analyzer.kde_statistics, OrderedDict)
        self.log(
            data_analyzer.str__kde_descriptive_statistics(
                statistics=data_analyzer.kde_statistics))

        data_analyzer.update_analysis(i_iteration)
        data_analyzer.write_analysis_file(filename=analysis_fn)
Exemplo n.º 29
0
import os, copy, argparse
from pypospack.pyposmat.data import PyposmatDataAnalyzer

if __name__ == "__main__":
    _fn_config = os.path.join("data__Ni__eam__born_exp_bjs_05",
                              "pyposmat.config.in")
    _fn_data = os.path.join("data__Ni__eam__born_exp_bjs_04",
                            "pyposmat.kde.9.out")
    _fn_kde_out = os.path.join("data__Ni__eam__born_exp_bjs_05",
                               "pyposmat.kde.00.out")

    pda = PyposmatDataAnalyzer(fn_config=_fn_config, fn_data=_fn_data)
    pda.write_kde_file(filename=_fn_kde_out)
Exemplo n.º 30
0
import os, copy, argparse
from collections import OrderedDict
from pypospack.pyposmat.data import PyposmatDataFile
from pypospack.pyposmat.data import PyposmatConfigurationFile
from pypospack.pyposmat.data import PyposmatDataAnalyzer

if __name__ == "__main__":
    _fn_config = os.path.join("resources", "pyposmat.config.in")
    _fn_data = os.path.join("resources", "pyposmat.results.0.out")
    _fn_pareto_out = os.path.join("pyposmat.pareto.out")

    pda = PyposmatDataAnalyzer(fn_config=_fn_config, fn_data=_fn_data)
    pareto_df = pda.calculate_pareto_set()

    datafile = PyposmatDataFile()
    datafile.df = pareto_df
    datafile.parameter_names = pda.parameter_names
    datafile.qoi_names = pda.qoi_names
    datafile.error_names = pda.error_names
    datafile.names = ['sim_id'] \
            +datafile.parameter_names\
            +datafile.qoi_names\
            +datafile.error_names
    datafile.types = ['sim_id']\
            +len(datafile.parameter_names)*['param']\
            +len(datafile.qoi_names)*['qoi_names']\
            +len(datafile.error_names)*['error_names']
    datafile.write(_fn_pareto_out)
    datafile.read(_fn_pareto_out)