Exemplo n.º 1
0
def dcopf_solver(om, ppopt, out_opt=None):
    """Solves a DC optimal power flow.

    Inputs are an OPF model object, a PYPOWER options dict and
    a dict containing fields (can be empty) for each of the desired
    optional output fields.

    Outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints
        - C{g}          (optional) constraint values
        - C{dg}         (optional) constraint 1st derivatives
        - C{df}         (optional) obj fun 1st derivatives (not yet implemented)
        - C{d2f}        (optional) obj fun 2nd derivatives (not yet implemented)

    C{success} is C{True} if solver converged successfully, C{False} otherwise.

    C{raw} is a raw output dict in form returned by MINOS
        - C{xr}     final value of optimization variables
        - C{pimul}  constraint multipliers
        - C{info}   solver specific termination code
        - C{output} solver specific output information

    @see: L{opf}, L{qps_pypower}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    @author: Richard Lincoln
    """
    if out_opt is None:
        out_opt = {}

    ## options
    verbose = ppopt['VERBOSE']
    alg = ppopt['OPF_ALG_DC']

    if alg == 0:
        if have_fcn('cplex'):  ## use CPLEX by default, if available
            alg = 500
        elif have_fcn('mosek'):  ## if not, then MOSEK, if available
            alg = 600
        elif have_fcn('gurobi'):  ## if not, then Gurobi, if available
            alg = 700
        else:  ## otherwise PIPS
            alg = 200

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"]
    cp = om.get_cost_params()
    N, H, Cw = cp["N"], cp["H"], cp["Cw"]
    fparm = array(c_[cp["dd"], cp["rh"], cp["kk"], cp["mm"]])
    Bf = om.userdata('Bf')
    Pfinj = om.userdata('Pfinj')
    vv, ll, _, _ = om.get_idx()

    ## problem dimensions
    ipol = find(gencost[:, MODEL] == POLYNOMIAL)  ## polynomial costs
    ipwl = find(gencost[:, MODEL] == PW_LINEAR)  ## piece-wise linear costs
    nb = bus.shape[0]  ## number of buses
    nl = branch.shape[0]  ## number of branches
    nw = N.shape[0]  ## number of general cost vars, w
    ny = om.getN('var', 'y')  ## number of piece-wise linear costs
    nxyz = om.getN('var')  ## total number of control vars of all types

    ## linear constraints & variable bounds
    A, l, u = om.linear_constraints()
    x0, xmin, xmax = om.getv()

    ## set up objective function of the form: f = 1/2 * X'*HH*X + CC'*X
    ## where X = [x;y;z]. First set up as quadratic function of w,
    ## f = 1/2 * w'*HHw*w + CCw'*w, where w = diag(M) * (N*X - Rhat). We
    ## will be building on the (optionally present) user supplied parameters.

    ## piece-wise linear costs
    any_pwl = int(ny > 0)
    if any_pwl:
        # Sum of y vars.
        Npwl = sparse(
            (ones(ny), (zeros(ny), arange(vv["i1"]["y"], vv["iN"]["y"]))),
            (1, nxyz))
        Hpwl = sparse((1, 1))
        Cpwl = array([1])
        fparm_pwl = array([[1, 0, 0, 1]])
    else:
        Npwl = None  #zeros((0, nxyz))
        Hpwl = None  #array([])
        Cpwl = array([])
        fparm_pwl = zeros((0, 4))

    ## quadratic costs
    npol = len(ipol)
    if any(find(gencost[ipol, NCOST] > 3)):
        stderr.write('DC opf cannot handle polynomial costs with higher '
                     'than quadratic order.\n')
    iqdr = find(gencost[ipol, NCOST] == 3)
    ilin = find(gencost[ipol, NCOST] == 2)
    polycf = zeros((npol, 3))  ## quadratic coeffs for Pg
    if len(iqdr) > 0:
        polycf[iqdr, :] = gencost[ipol[iqdr], COST:COST + 3]
    if npol:
        polycf[ilin, 1:3] = gencost[ipol[ilin], COST:COST + 2]
    polycf = dot(polycf, diag([baseMVA**2, baseMVA, 1]))  ## convert to p.u.
    if npol:
        Npol = sparse((ones(npol), (arange(npol), vv["i1"]["Pg"] + ipol)),
                      (npol, nxyz))  # Pg vars
        Hpol = sparse((2 * polycf[:, 0], (arange(npol), arange(npol))),
                      (npol, npol))
    else:
        Npol = None
        Hpol = None
    Cpol = polycf[:, 1]
    fparm_pol = ones((npol, 1)) * array([[1, 0, 0, 1]])

    ## combine with user costs
    NN = vstack(
        [n for n in [Npwl, Npol, N] if n is not None and n.shape[0] > 0],
        "csr")
    # FIXME: Zero dimension sparse matrices.
    if (Hpwl is not None) and any_pwl and (npol + nw):
        Hpwl = hstack([Hpwl, sparse((any_pwl, npol + nw))])
    if Hpol is not None:
        if any_pwl and npol:
            Hpol = hstack([sparse((npol, any_pwl)), Hpol])
        if npol and nw:
            Hpol = hstack([Hpol, sparse((npol, nw))])
    if (H is not None) and nw and (any_pwl + npol):
        H = hstack([sparse((nw, any_pwl + npol)), H])
    HHw = vstack(
        [h for h in [Hpwl, Hpol, H] if h is not None and h.shape[0] > 0],
        "csr")
    CCw = r_[Cpwl, Cpol, Cw]
    ffparm = r_[fparm_pwl, fparm_pol, fparm]

    ## transform quadratic coefficients for w into coefficients for X
    nnw = any_pwl + npol + nw
    M = sparse((ffparm[:, 3], (range(nnw), range(nnw))))
    MR = M * ffparm[:, 1]
    HMR = HHw * MR
    MN = M * NN
    HH = MN.T * HHw * MN
    CC = MN.T * (CCw - HMR)
    C0 = 0.5 * dot(MR, HMR) + sum(polycf[:, 2])  # Constant term of cost.

    ## set up input for QP solver
    opt = {'alg': alg, 'verbose': verbose}
    if (alg == 200) or (alg == 250):
        ## try to select an interior initial point
        Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180.0)

        lb, ub = xmin.copy(), xmax.copy()
        lb[xmin == -Inf] = -1e10  ## replace Inf with numerical proxies
        ub[xmax == Inf] = 1e10
        x0 = (lb + ub) / 2
        # angles set to first reference angle
        x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]
        if ny > 0:
            ipwl = find(gencost[:, MODEL] == PW_LINEAR)
            # largest y-value in CCV data
            c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl,
                                             NCOST + 2 * gencost[ipwl, NCOST])]
            x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c))

        ## set up options
        feastol = ppopt['PDIPM_FEASTOL']
        gradtol = ppopt['PDIPM_GRADTOL']
        comptol = ppopt['PDIPM_COMPTOL']
        costtol = ppopt['PDIPM_COSTTOL']
        max_it = ppopt['PDIPM_MAX_IT']
        max_red = ppopt['SCPDIPM_RED_IT']
        if feastol == 0:
            feastol = ppopt['OPF_VIOLATION']  ## = OPF_VIOLATION by default
        opt["pips_opt"] = {
            'feastol': feastol,
            'gradtol': gradtol,
            'comptol': comptol,
            'costtol': costtol,
            'max_it': max_it,
            'max_red': max_red,
            'cost_mult': 1
        }
    elif alg == 400:
        opt['ipopt_opt'] = ipopt_options([], ppopt)
    elif alg == 500:
        opt['cplex_opt'] = cplex_options([], ppopt)
    elif alg == 600:
        opt['mosek_opt'] = mosek_options([], ppopt)
    elif alg == 700:
        opt['grb_opt'] = gurobi_options([], ppopt)
    else:
        raise ValueError("Unrecognised solver [%d]." % alg)

    ##-----  run opf  -----
    x, f, info, output, lmbda = \
            qps_pypower(HH, CC, A, l, u, xmin, xmax, x0, opt)
    success = (info == 1)

    ##-----  calculate return values  -----
    if not any(isnan(x)):
        ## update solution data
        Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
        Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
        f = f + C0

        ## update voltages & generator outputs
        bus[:, VA] = Va * 180 / pi
        gen[:, PG] = Pg * baseMVA

        ## compute branch flows
        branch[:, [QF, QT]] = zeros((nl, 2))
        branch[:, PF] = (Bf * Va + Pfinj) * baseMVA
        branch[:, PT] = -branch[:, PF]

    ## package up results
    mu_l = lmbda["mu_l"]
    mu_u = lmbda["mu_u"]
    muLB = lmbda["lower"]
    muUB = lmbda["upper"]

    ## update Lagrange multipliers
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    bus[:, [LAM_P, LAM_Q, MU_VMIN, MU_VMAX]] = zeros((nb, 4))
    gen[:, [MU_PMIN, MU_PMAX, MU_QMIN, MU_QMAX]] = zeros((gen.shape[0], 4))
    branch[:, [MU_SF, MU_ST]] = zeros((nl, 2))
    bus[:, LAM_P] = (mu_u[ll["i1"]["Pmis"]:ll["iN"]["Pmis"]] -
                     mu_l[ll["i1"]["Pmis"]:ll["iN"]["Pmis"]]) / baseMVA
    branch[il, MU_SF] = mu_u[ll["i1"]["Pf"]:ll["iN"]["Pf"]] / baseMVA
    branch[il, MU_ST] = mu_u[ll["i1"]["Pt"]:ll["iN"]["Pt"]] / baseMVA
    gen[:, MU_PMIN] = muLB[vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMAX] = muUB[vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA

    pimul = r_[mu_l - mu_u, -ones(
        (ny > 0)),  ## dummy entry corresponding to linear cost row in A
               muLB - muUB]

    mu = {'var': {'l': muLB, 'u': muUB}, 'lin': {'l': mu_l, 'u': mu_u}}

    results = deepcopy(ppc)
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["mu"], results["f"] = \
            bus, branch, gen, om, x, mu, f

    raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output}

    return results, success, raw
Exemplo n.º 2
0
def qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt):
    """Quadratic Program Solver based on IPOPT.

    Uses IPOPT to solve the following QP (quadratic programming) problem::

        min 1/2 x'*H*x + c'*x
         x

    subject to::

        l <= A*x <= u       (linear constraints)
        xmin <= x <= xmax   (variable bounds)

    Inputs (all optional except C{H}, C{C}, C{A} and C{L}):
        - C{H} : matrix (possibly sparse) of quadratic cost coefficients
        - C{C} : vector of linear cost coefficients
        - C{A, l, u} : define the optional linear constraints. Default
        values for the elements of C{l} and C{u} are -Inf and Inf,
        respectively.
        - C{xmin, xmax} : optional lower and upper bounds on the
        C{x} variables, defaults are -Inf and Inf, respectively.
        - C{x0} : optional starting value of optimization vector C{x}
        - C{opt} : optional options structure with the following fields,
        all of which are also optional (default values shown in parentheses)
            - C{verbose} (0) - controls level of progress output displayed
                - 0 = no progress output
                - 1 = some progress output
                - 2 = verbose progress output
            - C{max_it} (0) - maximum number of iterations allowed
                - 0 = use algorithm default
            - C{ipopt_opt} - options struct for IPOPT, values in
            C{verbose} and C{max_it} override these options
        - C{problem} : The inputs can alternatively be supplied in a single
        C{problem} dict with fields corresponding to the input arguments
        described above: C{H, c, A, l, u, xmin, xmax, x0, opt}

    Outputs:
        - C{x} : solution vector
        - C{f} : final objective function value
        - C{exitflag} : exit flag
            - 1 = first order optimality conditions satisfied
            - 0 = maximum number of iterations reached
            - -1 = numerically failed
        - C{output} : output struct with the following fields:
            - C{iterations} - number of iterations performed
            - C{hist} - dict list with trajectories of the following:
            C{feascond}, C{gradcond}, C{compcond}, C{costcond}, C{gamma},
            C{stepsize}, C{obj}, C{alphap}, C{alphad}
            - message - exit message
        - C{lmbda} : dict containing the Langrange and Kuhn-Tucker
        multipliers on the constraints, with fields:
            - C{mu_l} - lower (left-hand) limit on linear constraints
            - C{mu_u} - upper (right-hand) limit on linear constraints
            - C{lower} - lower bound on optimization variables
            - C{upper} - upper bound on optimization variables

    Calling syntax options::
        x, f, exitflag, output, lmbda = \
            qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt)

        x = qps_ipopt(H, c, A, l, u)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax, x0)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt)
        x = qps_ipopt(problem), where problem is a struct with fields:
                        H, c, A, l, u, xmin, xmax, x0, opt
                        all fields except 'c', 'A' and 'l' or 'u' are optional
        x = qps_ipopt(...)
        x, f = qps_ipopt(...)
        x, f, exitflag = qps_ipopt(...)
        x, f, exitflag, output = qps_ipopt(...)
        x, f, exitflag, output, lmbda = qps_ipopt(...)

    Example::
        H = [   1003.1  4.3     6.3     5.9;
                4.3     2.2     2.1     3.9;
                6.3     2.1     3.5     4.8;
                5.9     3.9     4.8     10  ]
        c = zeros((4, 1))
        A = [   1       1       1       1
                0.17    0.11    0.10    0.18    ]
        l = [1, 0.10]
        u = [1, Inf]
        xmin = zeros((4, 1))
        x0 = [1, 0, 0, 1]
        opt = {'verbose': 2)
        x, f, s, out, lambda = qps_ipopt(H, c, A, l, u, xmin, [], x0, opt)

    Problem from U{http://www.jmu.edu/docs/sasdoc/sashtml/iml/chap8/sect12.htm}

    @see: C{pyipopt}, L{ipopt_options}

    @author: Ray Zimmerman (PSERC Cornell)
    """
    ##----- input argument handling  -----
    ## gather inputs
    if isinstance(H, dict):  ## problem struct
        p = H
        if 'opt' in p: opt = p['opt']
        if 'x0' in p: x0 = p['x0']
        if 'xmax' in p: xmax = p['xmax']
        if 'xmin' in p: xmin = p['xmin']
        if 'u' in p: u = p['u']
        if 'l' in p: l = p['l']
        if 'A' in p: A = p['A']
        if 'c' in p: c = p['c']
        if 'H' in p: H = p['H']
    else:  ## individual args
        assert H is not None
        assert c is not None
        assert A is not None
        assert l is not None

    if opt is None:
        opt = {}
#    if x0 is None:
#        x0 = array([])
#    if xmax is None:
#        xmax = array([])
#    if xmin is None:
#        xmin = array([])

## define nx, set default values for missing optional inputs
    if len(H) == 0 or not any(any(H)):
        if len(A) == 0 and len(xmin) == 0 and len(xmax) == 0:
            stderr.write(
                'qps_ipopt: LP problem must include constraints or variable bounds\n'
            )
        else:
            if len(A) > 0:
                nx = shape(A)[1]
            elif len(xmin) > 0:
                nx = len(xmin)
            else:  # if len(xmax) > 0
                nx = len(xmax)
        H = sparse((nx, nx))
    else:
        nx = shape(H)[0]

    if len(c) == 0:
        c = zeros(nx)

    if  len(A) > 0 and (len(l) == 0 or all(l == -Inf)) and \
                       (len(u) == 0 or all(u ==  Inf)):
        A = None  ## no limits => no linear constraints

    nA = shape(A)[0]  ## number of original linear constraints
    if nA:
        if len(u) == 0:  ## By default, linear inequalities are ...
            u = Inf * ones(nA)  ## ... unbounded above and ...

        if len(l) == 0:
            l = -Inf * ones(nA)  ## ... unbounded below.

    if len(x0) == 0:
        x0 = zeros(nx)

    ## default options
    if 'verbose' in opt:
        verbose = opt['verbose']
    else:
        verbose = 0

    if 'max_it' in opt:
        max_it = opt['max_it']
    else:
        max_it = 0

    ## make sure args are sparse/full as expected by IPOPT
    if len(H) > 0:
        if not issparse(H):
            H = sparse(H)

    if not issparse(A):
        A = sparse(A)

    ##-----  run optimization  -----
    ## set options dict for IPOPT
    options = {}
    if 'ipopt_opt' in opt:
        options['ipopt'] = ipopt_options(opt['ipopt_opt'])
    else:
        options['ipopt'] = ipopt_options()

    options['ipopt']['jac_c_constant'] = 'yes'
    options['ipopt']['jac_d_constant'] = 'yes'
    options['ipopt']['hessian_constant'] = 'yes'
    options['ipopt']['least_square_init_primal'] = 'yes'
    options['ipopt']['least_square_init_duals'] = 'yes'
    # options['ipopt']['mehrotra_algorithm']        = 'yes'     ## default 'no'
    if verbose:
        options['ipopt']['print_level'] = min(12, verbose * 2 + 1)
    else:
        options['ipopt']['print_level = 0']

    if max_it:
        options['ipopt']['max_iter'] = max_it

    ## define variable and constraint bounds, if given
    if nA:
        options['cu'] = u
        options['cl'] = l

    if len(xmin) > 0:
        options['lb'] = xmin

    if len(xmax) > 0:
        options['ub'] = xmax

    ## assign function handles
    funcs = {}
    funcs['objective'] = lambda x: 0.5 * x.T * H * x + c.T * x
    funcs['gradient'] = lambda x: H * x + c
    funcs['constraints'] = lambda x: A * x
    funcs['jacobian'] = lambda x: A
    funcs['jacobianstructure'] = lambda: A
    funcs['hessian'] = lambda x, sigma, lmbda: tril(H)
    funcs['hessianstructure'] = lambda: tril(H)

    ## run the optimization
    x, info = pyipopt(x0, funcs, options)

    if info['status'] == 0 | info['status'] == 1:
        eflag = 1
    else:
        eflag = 0

    output = {}
    if 'iter' in info:
        output['iterations'] = info['iter']

    output['info'] = info['status']
    f = funcs['objective'](x)

    ## repackage lmbdas
    kl = find(info['lmbda'] < 0)  ## lower bound binding
    ku = find(info['lmbda'] > 0)  ## upper bound binding
    mu_l = zeros(nA)
    mu_l[kl] = -info['lmbda'][kl]
    mu_u = zeros(nA)
    mu_u[ku] = info['lmbda'][ku]

    lmbda = {
        'mu_l': mu_l,
        'mu_u': mu_u,
        'lower': info['zl'],
        'upper': info['zu']
    }

    return x, f, eflag, output, lmbda
Exemplo n.º 3
0
def qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt):
    """Quadratic Program Solver based on IPOPT.

    Uses IPOPT to solve the following QP (quadratic programming) problem::

        min 1/2 x'*H*x + c'*x
         x

    subject to::

        l <= A*x <= u       (linear constraints)
        xmin <= x <= xmax   (variable bounds)

    Inputs (all optional except C{H}, C{C}, C{A} and C{L}):
        - C{H} : matrix (possibly sparse) of quadratic cost coefficients
        - C{C} : vector of linear cost coefficients
        - C{A, l, u} : define the optional linear constraints. Default
        values for the elements of C{l} and C{u} are -Inf and Inf,
        respectively.
        - C{xmin, xmax} : optional lower and upper bounds on the
        C{x} variables, defaults are -Inf and Inf, respectively.
        - C{x0} : optional starting value of optimization vector C{x}
        - C{opt} : optional options structure with the following fields,
        all of which are also optional (default values shown in parentheses)
            - C{verbose} (0) - controls level of progress output displayed
                - 0 = no progress output
                - 1 = some progress output
                - 2 = verbose progress output
            - C{max_it} (0) - maximum number of iterations allowed
                - 0 = use algorithm default
            - C{ipopt_opt} - options struct for IPOPT, values in
            C{verbose} and C{max_it} override these options
        - C{problem} : The inputs can alternatively be supplied in a single
        C{problem} dict with fields corresponding to the input arguments
        described above: C{H, c, A, l, u, xmin, xmax, x0, opt}

    Outputs:
        - C{x} : solution vector
        - C{f} : final objective function value
        - C{exitflag} : exit flag
            - 1 = first order optimality conditions satisfied
            - 0 = maximum number of iterations reached
            - -1 = numerically failed
        - C{output} : output struct with the following fields:
            - C{iterations} - number of iterations performed
            - C{hist} - dict list with trajectories of the following:
            C{feascond}, C{gradcond}, C{compcond}, C{costcond}, C{gamma},
            C{stepsize}, C{obj}, C{alphap}, C{alphad}
            - message - exit message
        - C{lmbda} : dict containing the Langrange and Kuhn-Tucker
        multipliers on the constraints, with fields:
            - C{mu_l} - lower (left-hand) limit on linear constraints
            - C{mu_u} - upper (right-hand) limit on linear constraints
            - C{lower} - lower bound on optimization variables
            - C{upper} - upper bound on optimization variables

    Calling syntax options::
        x, f, exitflag, output, lmbda = \
            qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt)

        x = qps_ipopt(H, c, A, l, u)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax, x0)
        x = qps_ipopt(H, c, A, l, u, xmin, xmax, x0, opt)
        x = qps_ipopt(problem), where problem is a struct with fields:
                        H, c, A, l, u, xmin, xmax, x0, opt
                        all fields except 'c', 'A' and 'l' or 'u' are optional
        x = qps_ipopt(...)
        x, f = qps_ipopt(...)
        x, f, exitflag = qps_ipopt(...)
        x, f, exitflag, output = qps_ipopt(...)
        x, f, exitflag, output, lmbda = qps_ipopt(...)

    Example::
        H = [   1003.1  4.3     6.3     5.9;
                4.3     2.2     2.1     3.9;
                6.3     2.1     3.5     4.8;
                5.9     3.9     4.8     10  ]
        c = zeros((4, 1))
        A = [   1       1       1       1
                0.17    0.11    0.10    0.18    ]
        l = [1, 0.10]
        u = [1, Inf]
        xmin = zeros((4, 1))
        x0 = [1, 0, 0, 1]
        opt = {'verbose': 2)
        x, f, s, out, lambda = qps_ipopt(H, c, A, l, u, xmin, [], x0, opt)

    Problem from U{http://www.jmu.edu/docs/sasdoc/sashtml/iml/chap8/sect12.htm}

    @see: C{pyipopt}, L{ipopt_options}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Richard Lincoln
    """
    ##----- input argument handling  -----
    ## gather inputs
    if isinstance(H, dict):       ## problem struct
        p = H
        if 'opt' in p: opt = p['opt']
        if 'x0' in p: x0 = p['x0']
        if 'xmax' in p: xmax = p['xmax']
        if 'xmin' in p: xmin = p['xmin']
        if 'u' in p: u = p['u']
        if 'l' in p: l = p['l']
        if 'A' in p: A = p['A']
        if 'c' in p: c = p['c']
        if 'H' in p: H = p['H']
    else:                         ## individual args
        assert H is not None
        assert c is not None
        assert A is not None
        assert l is not None

    if opt is None:
        opt = {}
#    if x0 is None:
#        x0 = array([])
#    if xmax is None:
#        xmax = array([])
#    if xmin is None:
#        xmin = array([])

    ## define nx, set default values for missing optional inputs
    if len(H) == 0 or not any(any(H)):
        if len(A) == 0 and len(xmin) == 0 and len(xmax) == 0:
            stderr.write('qps_ipopt: LP problem must include constraints or variable bounds\n')
        else:
            if len(A) > 0:
                nx = shape(A)[1]
            elif len(xmin) > 0:
                nx = len(xmin)
            else:    # if len(xmax) > 0
                nx = len(xmax)
        H = sparse((nx, nx))
    else:
        nx = shape(H)[0]

    if len(c) == 0:
        c = zeros(nx)

    if  len(A) > 0 and (len(l) == 0 or all(l == -Inf)) and \
                       (len(u) == 0 or all(u ==  Inf)):
        A = None                    ## no limits => no linear constraints

    nA = shape(A)[0]                ## number of original linear constraints
    if nA:
        if len(u) == 0:             ## By default, linear inequalities are ...
            u = Inf * ones(nA)      ## ... unbounded above and ...

        if len(l) == 0:
            l = -Inf * ones(nA)     ## ... unbounded below.

    if len(x0) == 0:
        x0 = zeros(nx)

    ## default options
    if 'verbose' in opt:
        verbose = opt['verbose']
    else:
        verbose = 0

    if 'max_it' in opt:
        max_it = opt['max_it']
    else:
        max_it = 0

    ## make sure args are sparse/full as expected by IPOPT
    if len(H) > 0:
        if not issparse(H):
            H = sparse(H)

    if not issparse(A):
        A = sparse(A)

    ##-----  run optimization  -----
    ## set options dict for IPOPT
    options = {}
    if 'ipopt_opt' in opt:
        options['ipopt'] = ipopt_options(opt['ipopt_opt'])
    else:
        options['ipopt'] = ipopt_options()

    options['ipopt']['jac_c_constant']    = 'yes'
    options['ipopt']['jac_d_constant']    = 'yes'
    options['ipopt']['hessian_constant']  = 'yes'
    options['ipopt']['least_square_init_primal']  = 'yes'
    options['ipopt']['least_square_init_duals']   = 'yes'
    # options['ipopt']['mehrotra_algorithm']        = 'yes'     ## default 'no'
    if verbose:
        options['ipopt']['print_level'] = min(12, verbose * 2 + 1)
    else:
        options['ipopt']['print_level = 0']

    if max_it:
        options['ipopt']['max_iter'] = max_it

    ## define variable and constraint bounds, if given
    if nA:
        options['cu'] = u
        options['cl'] = l

    if len(xmin) > 0:
        options['lb'] = xmin

    if len(xmax) > 0:
        options['ub'] = xmax

    ## assign function handles
    funcs = {}
    funcs['objective']         = lambda x: 0.5 * x.T * H * x + c.T * x
    funcs['gradient']          = lambda x: H * x + c
    funcs['constraints']       = lambda x: A * x
    funcs['jacobian']          = lambda x: A
    funcs['jacobianstructure'] = lambda : A
    funcs['hessian']           = lambda x, sigma, lmbda: tril(H)
    funcs['hessianstructure']  = lambda : tril(H)

    ## run the optimization
    x, info = pyipopt(x0, funcs, options)

    if info['status'] == 0 | info['status'] == 1:
        eflag = 1
    else:
        eflag = 0

    output = {}
    if 'iter' in info:
        output['iterations'] = info['iter']

    output['info']       = info['status']
    f = funcs['objective'](x)

    ## repackage lmbdas
    kl = find(info['lmbda'] < 0)                     ## lower bound binding
    ku = find(info['lmbda'] > 0)                     ## upper bound binding
    mu_l = zeros(nA)
    mu_l[kl] = -info['lmbda'][kl]
    mu_u = zeros(nA)
    mu_u[ku] = info['lmbda'][ku]

    lmbda = {
        'mu_l': mu_l,
        'mu_u': mu_u,
        'lower': info['zl'],
        'upper': info['zu']
    }

    return x, f, eflag, output, lmbda
Exemplo n.º 4
0
def dcopf_solver(om, ppopt, out_opt=None):
    """Solves a DC optimal power flow.

    Inputs are an OPF model object, a PYPOWER options dict and
    a dict containing fields (can be empty) for each of the desired
    optional output fields.

    Outputs are a C{results} dict, C{success} flag and C{raw} output dict.

    C{results} is a PYPOWER case dict (ppc) with the usual baseMVA, bus
    branch, gen, gencost fields, along with the following additional
    fields:
        - C{order}      see 'help ext2int' for details of this field
        - C{x}          final value of optimization variables (internal order)
        - C{f}          final objective function value
        - C{mu}         shadow prices on ...
            - C{var}
                - C{l}  lower bounds on variables
                - C{u}  upper bounds on variables
            - C{lin}
                - C{l}  lower bounds on linear constraints
                - C{u}  upper bounds on linear constraints
        - C{g}          (optional) constraint values
        - C{dg}         (optional) constraint 1st derivatives
        - C{df}         (optional) obj fun 1st derivatives (not yet implemented)
        - C{d2f}        (optional) obj fun 2nd derivatives (not yet implemented)

    C{success} is C{True} if solver converged successfully, C{False} otherwise.

    C{raw} is a raw output dict in form returned by MINOS
        - C{xr}     final value of optimization variables
        - C{pimul}  constraint multipliers
        - C{info}   solver specific termination code
        - C{output} solver specific output information

    @see: L{opf}, L{qps_pypower}

    @author: Ray Zimmerman (PSERC Cornell)
    @author: Carlos E. Murillo-Sanchez (PSERC Cornell & Universidad
    Autonoma de Manizales)
    """
    if out_opt is None:
        out_opt = {}

    ## options
    verbose = ppopt['VERBOSE']
    alg     = ppopt['OPF_ALG_DC']

    if alg == 0:
        if have_fcn('cplex'):        ## use CPLEX by default, if available
            alg = 500
        elif have_fcn('mosek'):      ## if not, then MOSEK, if available
            alg = 600
        elif have_fcn('gurobi'):     ## if not, then Gurobi, if available
            alg = 700
        else:                        ## otherwise PIPS
            alg = 200

    ## unpack data
    ppc = om.get_ppc()
    baseMVA, bus, gen, branch, gencost = \
        ppc["baseMVA"], ppc["bus"], ppc["gen"], ppc["branch"], ppc["gencost"]
    cp = om.get_cost_params()
    N, H, Cw = cp["N"], cp["H"], cp["Cw"]
    fparm = array(c_[cp["dd"], cp["rh"], cp["kk"], cp["mm"]])
    Bf = om.userdata('Bf')
    Pfinj = om.userdata('Pfinj')
    vv, ll, _, _ = om.get_idx()

    ## problem dimensions
    ipol = find(gencost[:, MODEL] == POLYNOMIAL) ## polynomial costs
    ipwl = find(gencost[:, MODEL] == PW_LINEAR)  ## piece-wise linear costs
    nb = bus.shape[0]              ## number of buses
    nl = branch.shape[0]           ## number of branches
    nw = N.shape[0]                ## number of general cost vars, w
    ny = om.getN('var', 'y')       ## number of piece-wise linear costs
    nxyz = om.getN('var')          ## total number of control vars of all types

    ## linear constraints & variable bounds
    A, l, u = om.linear_constraints()
    x0, xmin, xmax = om.getv()

    ## set up objective function of the form: f = 1/2 * X'*HH*X + CC'*X
    ## where X = [x;y;z]. First set up as quadratic function of w,
    ## f = 1/2 * w'*HHw*w + CCw'*w, where w = diag(M) * (N*X - Rhat). We
    ## will be building on the (optionally present) user supplied parameters.

    ## piece-wise linear costs
    any_pwl = int(ny > 0)
    if any_pwl:
        # Sum of y vars.
        Npwl = sparse((ones(ny), (zeros(ny), arange(vv["i1"]["y"], vv["iN"]["y"]))), (1, nxyz))
        Hpwl = sparse((1, 1))
        Cpwl = array([1])
        fparm_pwl = array([[1, 0, 0, 1]])
    else:
        Npwl = None#zeros((0, nxyz))
        Hpwl = None#array([])
        Cpwl = array([])
        fparm_pwl = zeros((0, 4))

    ## quadratic costs
    npol = len(ipol)
    if any(find(gencost[ipol, NCOST] > 3)):
        stderr.write('DC opf cannot handle polynomial costs with higher '
                     'than quadratic order.\n')
    iqdr = find(gencost[ipol, NCOST] == 3)
    ilin = find(gencost[ipol, NCOST] == 2)
    polycf = zeros((npol, 3))         ## quadratic coeffs for Pg
    if len(iqdr) > 0:
        polycf[iqdr, :] = gencost[ipol[iqdr], COST:COST + 3]
    if npol:
        polycf[ilin, 1:3] = gencost[ipol[ilin], COST:COST + 2]
    polycf = dot(polycf, diag([ baseMVA**2, baseMVA, 1]))     ## convert to p.u.
    if npol:
        Npol = sparse((ones(npol), (arange(npol), vv["i1"]["Pg"] + ipol)),
                      (npol, nxyz))  # Pg vars
        Hpol = sparse((2 * polycf[:, 0], (arange(npol), arange(npol))),
                      (npol, npol))
    else:
        Npol = None
        Hpol = None
    Cpol = polycf[:, 1]
    fparm_pol = ones((npol, 1)) * array([[1, 0, 0, 1]])

    ## combine with user costs
    NN = vstack([n for n in [Npwl, Npol, N] if n is not None and n.shape[0] > 0], "csr")
    # FIXME: Zero dimension sparse matrices.
    if (Hpwl is not None) and any_pwl and (npol + nw):
        Hpwl = hstack([Hpwl, sparse((any_pwl, npol + nw))])
    if Hpol is not None:
        if any_pwl and npol:
            Hpol = hstack([sparse((npol, any_pwl)), Hpol])
        if npol and nw:
            Hpol = hstack([Hpol, sparse((npol, nw))])
    if (H is not None) and nw and (any_pwl + npol):
        H = hstack([sparse((nw, any_pwl + npol)), H])
    HHw = vstack([h for h in [Hpwl, Hpol, H] if h is not None and h.shape[0] > 0], "csr")
    CCw = r_[Cpwl, Cpol, Cw]
    ffparm = r_[fparm_pwl, fparm_pol, fparm]

    ## transform quadratic coefficients for w into coefficients for X
    nnw = any_pwl + npol + nw
    M = sparse((ffparm[:, 3], (range(nnw), range(nnw))))
    MR = M * ffparm[:, 1]
    HMR = HHw * MR
    MN = M * NN
    HH = MN.T * HHw * MN
    CC = MN.T * (CCw - HMR)
    C0 = 0.5 * dot(MR, HMR) + sum(polycf[:, 2])  # Constant term of cost.

    ## set up input for QP solver
    opt = {'alg': alg, 'verbose': verbose}
    if (alg == 200) or (alg == 250):
        ## try to select an interior initial point
        Varefs = bus[bus[:, BUS_TYPE] == REF, VA] * (pi / 180.0)

        lb, ub = xmin.copy(), xmax.copy()
        lb[xmin == -Inf] = -1e10   ## replace Inf with numerical proxies
        ub[xmax ==  Inf] =  1e10
        x0 = (lb + ub) / 2;
        # angles set to first reference angle
        x0[vv["i1"]["Va"]:vv["iN"]["Va"]] = Varefs[0]
        if ny > 0:
            ipwl = find(gencost[:, MODEL] == PW_LINEAR)
            # largest y-value in CCV data
            c = gencost.flatten('F')[sub2ind(gencost.shape, ipwl,
                                NCOST + 2 * gencost[ipwl, NCOST])]
            x0[vv["i1"]["y"]:vv["iN"]["y"]] = max(c) + 0.1 * abs(max(c))

        ## set up options
        feastol = ppopt['PDIPM_FEASTOL']
        gradtol = ppopt['PDIPM_GRADTOL']
        comptol = ppopt['PDIPM_COMPTOL']
        costtol = ppopt['PDIPM_COSTTOL']
        max_it  = ppopt['PDIPM_MAX_IT']
        max_red = ppopt['SCPDIPM_RED_IT']
        if feastol == 0:
            feastol = ppopt['OPF_VIOLATION']    ## = OPF_VIOLATION by default
        opt["pips_opt"] = {  'feastol': feastol,
                             'gradtol': gradtol,
                             'comptol': comptol,
                             'costtol': costtol,
                             'max_it':  max_it,
                             'max_red': max_red,
                             'cost_mult': 1  }
    elif alg == 400:
        opt['ipopt_opt'] = ipopt_options([], ppopt)
    elif alg == 500:
        opt['cplex_opt'] = cplex_options([], ppopt)
    elif alg == 600:
        opt['mosek_opt'] = mosek_options([], ppopt)
    elif alg == 700:
        opt['grb_opt'] = gurobi_options([], ppopt)
    else:
        raise ValueError("Unrecognised solver [%d]." % alg)

    ##-----  run opf  -----
    x, f, info, output, lmbda = \
            qps_pypower(HH, CC, A, l, u, xmin, xmax, x0, opt)
    success = (info == 1)

    ##-----  calculate return values  -----
    if not any(isnan(x)):
        ## update solution data
        Va = x[vv["i1"]["Va"]:vv["iN"]["Va"]]
        Pg = x[vv["i1"]["Pg"]:vv["iN"]["Pg"]]
        f = f + C0

        ## update voltages & generator outputs
        bus[:, VA] = Va * 180 / pi
        gen[:, PG] = Pg * baseMVA

        ## compute branch flows
        branch[:, [QF, QT]] = zeros((nl, 2))
        branch[:, PF] = (Bf * Va + Pfinj) * baseMVA
        branch[:, PT] = -branch[:, PF]

    ## package up results
    mu_l = lmbda["mu_l"]
    mu_u = lmbda["mu_u"]
    muLB = lmbda["lower"]
    muUB = lmbda["upper"]

    ## update Lagrange multipliers
    il = find((branch[:, RATE_A] != 0) & (branch[:, RATE_A] < 1e10))
    bus[:, [LAM_P, LAM_Q, MU_VMIN, MU_VMAX]] = zeros((nb, 4))
    gen[:, [MU_PMIN, MU_PMAX, MU_QMIN, MU_QMAX]] = zeros((gen.shape[0], 4))
    branch[:, [MU_SF, MU_ST]] = zeros((nl, 2))
    bus[:, LAM_P]       = (mu_u[ll["i1"]["Pmis"]:ll["iN"]["Pmis"]] -
                           mu_l[ll["i1"]["Pmis"]:ll["iN"]["Pmis"]]) / baseMVA
    branch[il, MU_SF]   = mu_u[ll["i1"]["Pf"]:ll["iN"]["Pf"]] / baseMVA
    branch[il, MU_ST]   = mu_u[ll["i1"]["Pt"]:ll["iN"]["Pt"]] / baseMVA
    gen[:, MU_PMIN]     = muLB[vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA
    gen[:, MU_PMAX]     = muUB[vv["i1"]["Pg"]:vv["iN"]["Pg"]] / baseMVA

    pimul = r_[
      mu_l - mu_u,
     -ones(int(ny > 0)), ## dummy entry corresponding to linear cost row in A
      muLB - muUB
    ]

    mu = { 'var': {'l': muLB, 'u': muUB},
           'lin': {'l': mu_l, 'u': mu_u} }

    results = deepcopy(ppc)
    results["bus"], results["branch"], results["gen"], \
        results["om"], results["x"], results["mu"], results["f"] = \
            bus, branch, gen, om, x, mu, f

    raw = {'xr': x, 'pimul': pimul, 'info': info, 'output': output}

    return results, success, raw