Exemplo n.º 1
0
    def add_walking_costs(self):
        geod = Geod(ellps="WGS84")
        for stop_key in self.stops_label_dict:

            stop_dict = self.stops_label_dict[stop_key]
            stops_around = Timetable.objects.filter(stop__stopLat__range=(stop_dict["stop_lat"] - LATS_DIFF,
                                                                          stop_dict["stop_lat"] + LATS_DIFF),
                                                    stop__stopLon__range=(stop_dict["stop_lon"] - LON_DIFF,
                                                                          stop_dict["stop_lon"] + LON_DIFF),
                                                    arrivalTime__range=(stop_dict["time_arrival"] - MAX_CHANGE_TIME,
                                                                        stop_dict["time_arrival"] + MAX_CHANGE_TIME),
                                                    date=USER_DATE)

            for stop_around in stops_around:
                # if change to the same routeId - continue to next loop iteration
                if stop_around.route.routeId == stop_dict["route_id"]:
                    continue

                # calculating euclidean distance between 2 stops
                lons = [stop_dict["stop_lon"], stop_around.stop.stopLon]
                lats = [stop_dict["stop_lat"], stop_around.stop.stopLat]

                walk_distance = geod.line_length(lons, lats)

                # calculating average time to walk from stop1 to stop
                walk_time = walk_distance / AVERAGE_HUMAN_SPEED

                # if we can't walk on time to stop_around - continue to next loop iteration
                if stop_dict["time_arrival"] + timedelta(minutes=walk_time) > stop_around.arrivalTime:
                    continue

                stop_around_label_key = str(stop_around.route.routeId) + "|" + str(stop_around.stop.stopId)

                wait_time_ = -1

                # calculate time user has to wait for new transport if stop around is not user endpoint
                if stop_around.stop.stopId != self.end_stop_id:
                    after_walk_datetime = stop_dict["time_arrival"] + timedelta(minutes=walk_time)
                    wait_time_timedelta = stop_around.arrivalTime - after_walk_datetime
                    if wait_time_timedelta > MAX_WAIT_TIME:
                        continue
                    wait_time_ = CostMatrix.timedelta_to_minutes(wait_time_timedelta)

                    summed_time = walk_time + wait_time_
                else:
                    summed_time = walk_time

                # adding new node to walking_label_dict
                if stop_around_label_key not in self.stops_label_dict and stop_around_label_key not in self.walking_label_dict:
                    self.add_stop_label(stop_around, self.walking_label_dict, stop_around_label_key, walked_in=True)
                label_dict = self.walking_label_dict if stop_around_label_key in self.walking_label_dict else self.stops_label_dict
                cost_dict_key = str(stop_dict["cost_matrix_label"]) + "+" + \
                                str(label_dict[stop_around_label_key]["cost_matrix_label"])
                # adding new cost to cost_dict
                self.cost_dict[cost_dict_key] = [walk_time, wait_time_]
Exemplo n.º 2
0
    def overground_distance(self, point: (float, float)) -> float:
        """
        horizontal distance over ellipsoid

        :param point: (x, y) point
        :return: distance in ellipsodal units
        """

        if not isinstance(point, numpy.ndarray):
            point = numpy.array(point)
        coordinates = numpy.stack([self.coordinates[:2], point], axis=0)
        if self.crs.is_projected:
            return numpy.hypot(*numpy.sum(numpy.diff(coordinates, axis=0), axis=0))
        else:
            ellipsoid = self.crs.datum.to_json_dict()["ellipsoid"]
            geodetic = Geod(
                a=ellipsoid["semi_major_axis"], rf=ellipsoid["inverse_flattening"]
            )
            return geodetic.line_length(coordinates[:, 0], coordinates[:, 1])
Exemplo n.º 3
0
def get_linelength_between_points(C1: list, C2: list) -> float:
    geod = Geod(ellps="WGS84")
    total_length = geod.line_length(C1, C2)
    return total_length
Exemplo n.º 4
0
def test_line_length__radians():
    geod = Geod(ellps="WGS84")
    total_length = geod.line_length([1, 2], [0.5, 1], radians=True)
    assert_almost_equal(total_length, 5426061.32197463, decimal=3)
Exemplo n.º 5
0
def test_line_length__single_point():
    geod = Geod(ellps="WGS84")
    assert geod.line_length(1, 1) == 0
Exemplo n.º 6
0
def run_skill_analysis(drifter_file,
                       drifter_id,
                       skill_files,
                       date_range,
                       grid,
                       period=pd.Timedelta('3 Days'),
                       data_freq=pd.Timedelta('60 minutes')):
    """Calculate the skill score for a given particle run. Here, the skill score
    is calculated as in Liu and Weisberg (2011).

    Keyword arguments:
    drifter_file -- a .csv file of the drifter data with the columns 'datetime',
                    'lat', and 'lon'
    skill_files -- a sorted list of the model output netCDF files that contain
                   the tracks from the model runs for skill
    date_range -- a numpy.ndarray object of numpy.datetime64 objects, the
                  drifter and output data frequencies should match
    period -- a pandas Timedelta object representing the time period for which
              to calculate the skill
    data_freq -- a pandas Timedelta object representing the frequency of the
                 drifter data

    Returns:

    a numpy array of particle times, trajectory lengths, separation distances,
    and skill scores
    """

    geod = Geod(ellps="WGS84")
    drifter_data = get_drifter_data(drifter_file, drifter_id)
    drifter_data = drifter_data[drifter_data['datetime'].isin(date_range)]

    # query one of the files to find the number of particles
    rootgrp = Dataset(skill_files[0])
    num_particles = rootgrp['release'].size
    skill_data = np.empty((len(skill_files), num_particles, 4), dtype='O')

    # for each skill output file
    for i in range(0, len(skill_files)):
        # open model data and convert times to datetimes
        rootgrp = Dataset(skill_files[i])
        units, epoch = rootgrp['time'].units.split(' since ')
        times = rootgrp['time'][:]
        times = pd.Timestamp(epoch) + pd.TimedeltaIndex(times, unit=units)
        # get the drifter coordinates at corresponding times as model output
        drift_indices = drifter_data['datetime'].isin(times)
        drifter_lats = drifter_data['lat'].values[drift_indices]
        drifter_lons = drifter_data['lon'].values[drift_indices]
        # get the model coordinates
        model_indices = times.isin(drifter_data['datetime'])
        model_lats = rootgrp['lat'][:, model_indices]
        model_lons = rootgrp['lon'][:, model_indices]

        # for each particle
        for j in range(0, num_particles):
            # find the total length of the trajectory by adding each path length
            traj_len = geod.line_length(model_lons[j], model_lats[j])
            # find the separation distance
            lons = np.array([drifter_lons[-1], model_lons[j, -1]])
            lats = np.array([drifter_lats[-1], model_lats[j, -1]])
            sep_distance = geod.line_length(lons, lats)
            c = sep_distance / traj_len
            s = np.maximum(0, 1 - c)
            # save the skill information to array
            skill_data[i, j] = np.array([times[0], traj_len, sep_distance, s])

    return skill_data
Exemplo n.º 7
0
def aco_algorithm(num_iteration, ants, nodes, visibility, cost_matrix_object, e, alpha, beta, display_num):

    geod = Geod(ellps="WGS84")
    cost_matrix = cost_matrix_object.cost_matrix
    stops_label_dict = cost_matrix_object.stops_label_dict
    walking_label_dict = cost_matrix_object.walking_label_dict
    start_nodes = cost_matrix_object.start_nodes
    end_nodes = cost_matrix_object.end_nodes
    route_dict = {}
    best_route = []
    dist_min_cost = 0
    dist_min_cost_arr = []

    if not start_nodes or not end_nodes:
        return route_dict, best_route, dist_min_cost, dist_min_cost_arr

    # FIXME consider multiple starting nodes
    #  now we are taking into consideration only first possible start point
    start = stops_label_dict[start_nodes[0]]["cost_matrix_label"]

    possible_ends = [stops_label_dict[possible_end]["cost_matrix_label"] for possible_end in end_nodes if possible_end in stops_label_dict]
    possible_ends.extend([walking_label_dict[possible_end]["cost_matrix_label"] for possible_end in end_nodes if possible_end in walking_label_dict])

    # initializing pheromone present at the paths to stops
    pheromone = .1 * np.ones((nodes, nodes))

    branches_deleted = 0

    for ite in range(num_iteration):

        # plots pheromone levels
        display_pheromone(pheromone, num_iteration, ite + 1, display_num, cost_matrix_object.cost_matrix_size)

        for i in range(ants):
            # initial starting position of every ant
            route = [start]

            temp_visibility = np.array(visibility)  # creating a copy of visibility

            node = route[0]
            while node not in possible_ends:
                cur_loc = node

                temp_visibility[:, cur_loc] = 0  # making visibility of the current node equals zero

                p_feature = np.power(pheromone[cur_loc, :], beta)  # calculating pheromone feature
                v_feature = np.power(visibility[cur_loc, :], alpha)  # calculating visibility feature

                p_feature = p_feature[:, np.newaxis]  # adding axis to make a size[5,1]
                v_feature = v_feature[:, np.newaxis]  # adding axis to make a size[5,1]

                combine_feature = np.multiply(p_feature, v_feature)  # calculating the combine feature

                # checking if ant can go any further - if not - ant come back to start node and
                # tries to search for food again
                if not np.any(combine_feature):
                    # adding walk path to first endnode
                    last_stop_key_label = cost_matrix_object.find_label_dict_key_with_cost_matrix_label(node)
                    endpoint_key_label = end_nodes[0]
                    last_stop_label_dict = walking_label_dict if last_stop_key_label in walking_label_dict else stops_label_dict
                    endpoint_label_dict = walking_label_dict if endpoint_key_label in walking_label_dict else stops_label_dict

                    # calculating euclidean distance between 2 stops
                    lons = [last_stop_label_dict[last_stop_key_label]["stop_lon"], endpoint_label_dict[endpoint_key_label]["stop_lon"]]
                    lats = [last_stop_label_dict[last_stop_key_label]["stop_lat"], endpoint_label_dict[endpoint_key_label]["stop_lat"]]

                    walk_distance = geod.line_length(lons, lats)

                    # calculating average time to walk from stop1 to stop
                    walk_time = walk_distance / AVERAGE_HUMAN_SPEED
                    if walk_time > 30:
                        # TODO - for every node - calculate walk time to check if we are not close enough to endpoint
                        counter = len(route) - 2
                        for route_node in reversed(route[1:]):
                            # delete non optimal graph branch
                            node_costs = cost_matrix_object.return_cost_matrix_cost_for_row(route_node)
                            # if node does not have any other branches - delete it
                            non_zero_cols_indexes = np.nonzero(node_costs)[0]       # returns list

                            if len(non_zero_cols_indexes) == 0:
                                cost_matrix_object.cost_matrix[route[counter]][route_node] = [0, -1]
                                cost_matrix[route[counter]][route_node] = [0, -1]
                                branches_deleted += 1
                                visibility[route[counter]][route_node] = 0
                                temp_visibility[route[counter]][route_node] = 0
                                print(f"node {route[counter]}->{route_node} deleted, branches deleted: {branches_deleted}")
                            else:
                                break
                            counter -= 1
                        route = [start]
                        node = route[0]
                        continue
                    else:
                        cost_matrix[node][possible_ends[0]] = [walk_time, 0]
                        route.append(possible_ends[0])
                        break

                total = np.sum(combine_feature)  # sum of all the feature

                # finding probability of element probabilities(i) = combine_feature(i)/total
                probabilities = combine_feature / total
                # if not node:
                #     print(f"probabils: {probabilities}")
                cumulative_probabilities = np.cumsum(probabilities)  # calculating cumulative sum

                r = np.random.random_sample()  # random number in [0,1)

                # finding the next node having probability higher then random number (r)
                node = np.nonzero(cumulative_probabilities > r)[0][0]

                route.append(node)

            route_dict[i] = route

        dist_cost = {}

        for key in route_dict:
            route_cost = []
            for counter, node in enumerate(route_dict[key][:-1]):
                # calculating total tour distance
                cost = cost_matrix_object.return_cost_matrix_cost(int(node), int(route_dict[key][counter+1]))
                route_cost.append(cost)

            dist_cost[key] = route_cost  # storing distance of tour for 'i'th ant at location 'i'

        dist_cost_sum = {key: sum(route_cost) for key, route_cost in dist_cost.items()}

        dist_min_loc = min(dist_cost_sum, key=dist_cost_sum.get)  # finding location of minimum of dist_cost

        dist_min_cost = dist_cost_sum[dist_min_loc]  # finding min of dist_cost

        best_route = route_dict[dist_min_loc]  # initializing current traversed as best route

        pheromone = (1 - e) * pheromone  # evaporation of pheromone with (1-e)

        for key in route_dict:
            for counter, node in enumerate(route_dict[key][:-1]):
                dt = 1 / dist_cost_sum[key]
                pheromone[int(node), int(route_dict[key][counter+1])] += dt
                # updating the pheromone with delta distance (dt)
                # dt will be greater when distance will be smaller

    return route_dict, best_route, dist_min_cost
Exemplo n.º 8
0
from pyproj import CRS
from pyproj import Geod

print("doing pyproj test")

crs = CRS.from_epsg(4326)
assert crs.to_authority() == ('EPSG', '4326')
assert crs.prime_meridian.name == "Greenwich"

# and test based on geodesic line length example from
# https://pyproj4.github.io/pyproj/stable/examples.html

lats = [
    -72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7, -66.6,
    -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7
]

lons = [
    -74, -102, -102, -131, -163, 163, 172, 140, 113, 88, 59, 25, -4, -14, -33,
    -46, -61
]

geod = Geod(ellps="WGS84")
total_length = geod.line_length(lons, lats)

assert 14 < total_length / 1e6 < 15
Exemplo n.º 9
0
sites = ['OPO','MAU','WEST','FLE','TAS','LWR','CAP','CAM','KAI','GOB','TIM','HSB','BGB','FIO']
site = sites[int(sys.argv[1])]

geod = Geod(ellps="WGS84")

for file in sorted(glob.glob(f'/nesi/nobackup/vuw03073/bigboy/all_settlement/{site}*')):
	traj = nc.Dataset(file)
	ym = file[-9:-3]
	print(f'{site}_{ym}', flush=True)
	lon = traj.variables['lon'][:]
	lat = traj.variables['lat'][:]
	dists = np.zeros((len(lon), 2))
	for part in range(len(lon)):
		part_lons = lon[part][np.where(lon[part].mask==False)]
		part_lats = lat[part][np.where(lat[part].mask==False)]
		along_track = geod.line_length(part_lons, part_lats)
		start_finish = geod.line_length([part_lons[0], part_lons[-1]], [part_lats[0],part_lats[-1]])
		dists[part, 0] = along_track
		dists[part, 1] = start_finish
	outFile = open(f'bigboy_distances/{site}_{ym}.txt', 'w')
	np.savetxt(outFile, dists)
	outFile.close()

# def calc_along_track(trajectory):
# 	import pdb; pdb.set_trace()
# 	lons = trajectory.lon.data
# 	lats = trajectory.lat.data
# 	lons = lons[(lons>-10000) & (lons < 10000)]
# 	lats = lats[(lats>-10000) & (lats < 10000)]
# 	along_track = 0
# 	for i in range(len(lons)-1):