Exemplo n.º 1
0
 def test_mv_experiments(self):
     """This method runs the experimenter with five ExperimentMajorityVoteFindVotes experiments."""
     experimenter = Experimenter(LOG_PATH + 'test_mv_experiments')
     for i in range(5):
         n = 8
         logger_name = LOG_PATH + 'test_mv_exp{0}'.format(i)
         experiment = ExperimentMajorityVoteFindVotes(
             progress_log_prefix=logger_name,
             parameters=MVParameters(n=n,
                                     k=2,
                                     challenge_count=2**8,
                                     seed_instance=0xC0DEBA5E,
                                     seed_instance_noise=0xdeadbeef,
                                     transformation='id',
                                     combiner='xor',
                                     mu=0,
                                     sigma=1,
                                     sigma_noise_ratio=NoisyLTFArray.
                                     sigma_noise_from_random_weights(
                                         n, 1, .5),
                                     seed_challenges=0xf000 + i,
                                     desired_stability=0.95,
                                     overall_desired_stability=0.8,
                                     minimum_vote_count=1,
                                     iterations=2,
                                     bias=None))
         experimenter.queue(experiment)
     experimenter.run()
Exemplo n.º 2
0
 def test_mv_experiments(self):
     """This method runs the experimenter with five ExperimentMajorityVoteFindVotes experiments."""
     experiments = []
     for i in range(5):
         n = 8
         logger_name = 'test_mv_exp{0}'.format(i)
         experiment = ExperimentMajorityVoteFindVotes(
             log_name=logger_name,
             n=n,
             k=2,
             challenge_count=2**8,
             seed_instance=0xC0DEBA5E,
             seed_instance_noise=0xdeadbeef,
             transformation=LTFArray.transform_id,
             combiner=LTFArray.combiner_xor,
             mu=0,
             sigma=1,
             sigma_noise_ratio=NoisyLTFArray.
             sigma_noise_from_random_weights(n, 1, .5),
             seed_challenges=0xf000 + i,
             desired_stability=0.95,
             overall_desired_stability=0.8,
             minimum_vote_count=1,
             iterations=2,
             bias=None)
         experiments.append(experiment)
     experimenter = Experimenter('test_mv_experimenter', experiments)
     experimenter.run()
Exemplo n.º 3
0
 def test_lr_experiments(self):
     """This method runs the experimenter for four logistic regression experiments."""
     lr16_4_1 = ExperimentLogisticRegression('test_lr_experiments1', 8, 2,
                                             2**8, 0xbeef, 0xbeef,
                                             LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_2 = ExperimentLogisticRegression('test_lr_experiments2', 8, 2,
                                             2**8, 0xbeef, 0xbeef,
                                             LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_3 = ExperimentLogisticRegression('test_lr_experiments3', 8, 2,
                                             2**8, 0xbeef, 0xbeef,
                                             LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_4 = ExperimentLogisticRegression('test_lr_experiments4', 8, 2,
                                             2**8, 0xbeef, 0xbeef,
                                             LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_5 = ExperimentLogisticRegression('test_lr_experiments5', 8, 2,
                                             2**8, 0xbeef, 0xbeef,
                                             LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     experiments = [lr16_4_1, lr16_4_2, lr16_4_3, lr16_4_4, lr16_4_5]
     experimenter = Experimenter('log', experiments)
     experimenter.run()
Exemplo n.º 4
0
    def test_multiprocessing_logs(self):
        """
        This test checks for the predicted amount for result.
        """
        experiments = []
        n = 28
        for i in range(n):
            log_name = 'test_multiprocessing_logs{0}'.format(i)
            lr16_4_1 = ExperimentLogisticRegression(log_name, 8, 2, 2 ** 8, 0xbeef, 0xbeef,
                                                    LTFArray.transform_id,
                                                    LTFArray.combiner_xor)
            experiments.append(lr16_4_1)

        for i in range(n):
            log_name = 'test_multiprocessing_logs{0}'.format(i)
            experiment = ExperimentMajorityVoteFindVotes(
                log_name=log_name,
                n=8,
                k=2,
                challenge_count=2 ** 8,
                seed_instance=0xC0DEBA5E,
                seed_instance_noise=0xdeadbeef,
                transformation=LTFArray.transform_id,
                combiner=LTFArray.combiner_xor,
                mu=0,
                sigma=1,
                sigma_noise_ratio=NoisyLTFArray.sigma_noise_from_random_weights(n, 1, .5),
                seed_challenges=0xf000 + i,
                desired_stability=0.95,
                overall_desired_stability=0.8,
                minimum_vote_count=1,
                iterations=2,
                bias=False
            )
            experiments.append(experiment)

        experimenter = Experimenter('test_multiprocessing_logs', experiments)
        experimenter.run()

        def line_count(file_object):
            """
            :param file_object:
            :return: number of lines
            """
            count = 0
            while file_object.readline() != '':
                count = count + 1
            return count

        paths = list(glob.glob('*.log'))
        # Check if the number of lines is greater than zero
        for log_path in paths:
            exp_log_file = open(log_path, 'r')
            self.assertGreater(line_count(exp_log_file), 0, 'The experiment log is empty.')
            exp_log_file.close()

        # Check if the number of results is correct
        log_file = open('test_multiprocessing_logs.log', 'r')
        self.assertEqual(line_count(log_file), n*2, 'Unexpected number of results')
        log_file.close()
Exemplo n.º 5
0
 def test_broken_experiment(self):
     """
     Verify the experimenter handles experiments that raise exceptions correctly.
     """
     experimenter = Experimenter(LOG_PATH + 'test_broken_experiments')
     experimenter.queue(ExperimentBroken('foobar', {}))
     experimenter.queue(ExperimentBroken('foobaz', {}))
     with self.assertRaises(FailedExperimentsException):
         experimenter.run()
Exemplo n.º 6
0
 def test_lr_experiments(self):
     lr16_4_1 = ExperimentLogisticRegression('exp1.log', 8, 2, 2**8, 0xbeef,
                                             0xbeef, LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_2 = ExperimentLogisticRegression('exp2.log', 8, 2, 2**8, 0xbeef,
                                             0xbeef, LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_3 = ExperimentLogisticRegression('exp3.log', 8, 2, 2**8, 0xbeef,
                                             0xbeef, LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_4 = ExperimentLogisticRegression('exp4.log', 8, 2, 2**8, 0xbeef,
                                             0xbeef, LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     lr16_4_5 = ExperimentLogisticRegression('exp5.log', 8, 2, 2**8, 0xbeef,
                                             0xbeef, LTFArray.transform_id,
                                             LTFArray.combiner_xor)
     experiments = [lr16_4_1, lr16_4_2, lr16_4_3, lr16_4_4, lr16_4_5]
     experimenter = Experimenter('log', experiments)
     experimenter.run()
Exemplo n.º 7
0
 def test_lr_experiments(self):
     """This method runs the experimenter for five logistic regression experiments."""
     experimenter = Experimenter(LOG_PATH + 'test_lr_experiments')
     for i in range(5):
         experimenter.queue(
             ExperimentLogisticRegression(
                 LOG_PATH + 'test_lr_experiments{}'.format(i + 1),
                 LRParameters(n=8,
                              k=2,
                              N=2**8,
                              seed_model=0xbeef,
                              seed_distance=0xbeef,
                              seed_instance=0xdead,
                              seed_challenge=0xdead,
                              transformation='id',
                              combiner='xor',
                              mini_batch_size=2,
                              shuffle=False,
                              convergence_decimals=2)))
     experimenter.run()
Exemplo n.º 8
0
    def test_file_handle(self):
        """
        This test check if process file handles are deleted. Some Systems have have limit of open file handles.
        """
        class ExperimentDummy(Experiment):
            """
            This is an empty experiment class which can be used to run a huge amount of experiments with an
            experimenter.
            """
            def run(self):
                pass

            def analyze(self):
                pass

        experiments = []
        n = 1024
        for i in range(n):
            log_name = 'fail{0}'.format(i)
            experiments.append(ExperimentDummy(log_name))

        experimenter = Experimenter('fail', experiments)
        experimenter.run()
Exemplo n.º 9
0
    def test_file_handle(self):
        """
        This test check if process file handles are deleted. Some Systems have have limit of open file handles. 
        :return: 
        """
        class ExperimentDummy(Experiment):
            def __init__(self, log_name):
                super().__init__(log_name)

            def run(self):
                pass

            def analyze(self):
                pass

        experiments = []
        n = 1024
        for i in range(n):
            log_name = 'fail{0}'.format(i)
            experiments.append(ExperimentDummy(log_name))

        experimenter = Experimenter('fail', experiments)
        experimenter.run()
Exemplo n.º 10
0
def main(args):
    """
    This method includes the main functionality of the module it parses the argument vector and executes the learning
    attempts on the PUF instances.
    """
    if len(args) < 10 or len(args) > 11:
        stderr.write('LTF Array Simulator and Logistic Regression Learner\n')
        stderr.write('Usage:\n')
        stderr.write('sim_learn.py n k transformation combiner N restarts seed_instance seed_model [log_name]\n')
        stderr.write('               n: number of bits per Arbiter chain\n')
        stderr.write('               k: number of Arbiter chains\n')
        stderr.write('  transformation: used to transform input before it is used in LTFs\n')
        stderr.write('                  currently available:\n')
        stderr.write('                  - id  -- does nothing at all\n')
        stderr.write('                  - atf -- convert according to "natural" Arbiter chain\n')
        stderr.write('                           implementation\n')
        stderr.write('                  - mm  -- designed to achieve maximum PTF expansion length\n')
        stderr.write('                           only implemented for k=2 and even n\n')
        stderr.write('                  - lightweight_secure -- design by Majzoobi et al. 2008\n')
        stderr.write('                                          only implemented for even n\n')
        stderr.write('                  - shift_lightweight_secure -- design like Majzoobi\n')
        stderr.write('                                                et al. 2008, but with the shift\n')
        stderr.write('                                                operation executed first\n')
        stderr.write('                                                only implemented for even n\n')
        stderr.write('                  - soelter_lightweight_secure -- design like Majzoobi\n')
        stderr.write('                                                  et al. 2008, but one bit different\n')
        stderr.write('                                                  only implemented for even n\n')
        stderr.write('                  - 1_n_bent -- one LTF gets "bent" input, the others id\n')
        stderr.write('                  - 1_1_bent -- one bit gets "bent" input, the others id,\n')
        stderr.write('                                this is proven to have maximum PTF\n')
        stderr.write('                                length for the model\n')
        stderr.write('                  - polynomial -- challenges are interpreted as polynomials\n')
        stderr.write('                                  from GF(2^64). From the initial challenge c,\n')
        stderr.write('                                  the i-th Arbiter chain gets the coefficients \n')
        stderr.write('                                  of the polynomial c^(i+1) as challenge.\n')
        stderr.write('                                  For now only challenges with length n=64 are accepted.\n')
        stderr.write(
            '                  - permutation_atf -- for each Arbiter chain first a pseudorandom permutation \n')
        stderr.write('                                       is applied and thereafter the ATF transform.\n')
        stderr.write('                  - random -- Each Arbiter chain gets a random challenge derived from the\n')
        stderr.write('                              original challenge using a PRNG.\n')
        stderr.write('        combiner: used to combine the output bits to a single bit\n')
        stderr.write('                  currently available:\n')
        stderr.write('                  - xor     -- output the parity of all output bits\n')
        stderr.write('                  - ip_mod2 -- output the inner product mod 2 of all output\n')
        stderr.write('                               bits (even n only)\n')
        stderr.write('               N: number of challenge response pairs in the training set\n')
        stderr.write('        restarts: number of repeated initializations the learner\n')
        stderr.write('       instances: number of repeated initializations the instance\n')
        stderr.write('                  The number total learning attempts is restarts*instances.\n')
        stderr.write('   seed_instance: random seed used for LTF array instance\n')
        stderr.write('      seed_model: random seed used for the model in first learning attempt\n')
        stderr.write('      [log_name]: path to the logfile which contains results from all instances. The tool '
                     'will add a ".log" to log_name. The default path is ./sim_learn.log\n')
        quit(1)

    n = int(args[1])
    k = int(args[2])
    transformation_name = args[3]
    combiner_name = args[4]
    N = int(args[5])
    restarts = int(args[6])

    instances = int(args[7])

    seed_instance = int(args[8], 16)
    seed_model = int(args[9], 16)

    transformation = None
    combiner = None

    try:
        transformation = getattr(LTFArray, 'transform_%s' % transformation_name)
    except AttributeError:
        stderr.write('Transformation %s unknown or currently not implemented\n' % transformation_name)
        quit()

    try:
        combiner = getattr(LTFArray, 'combiner_%s' % combiner_name)
    except AttributeError:
        stderr.write('Combiner %s unknown or currently not implemented\n' % combiner_name)
        quit()

    log_name = 'sim_learn'
    if len(args) == 11:
        log_name = args[10]

    stderr.write('Learning %s-bit %s XOR Arbiter PUF with %s CRPs and %s restarts.\n\n' % (n, k, N, restarts))
    stderr.write('Using\n')
    stderr.write('  transformation:       %s\n' % transformation)
    stderr.write('  combiner:             %s\n' % combiner)
    stderr.write('  instance random seed: 0x%x\n' % seed_instance)
    stderr.write('  model random seed:    0x%x\n' % seed_model)
    stderr.write('\n')

    # create different experiment instances
    experiments = []
    for j in range(instances):
        for start_number in range(restarts):
            l_name = '%s_%i_%i' % (log_name, j, start_number)
            experiment = ExperimentLogisticRegression(
                log_name=l_name,
                n=n,
                k=k,
                N=N,
                seed_instance=seed_instance + j,
                seed_model=seed_model + j + start_number,
                transformation=transformation,
                combiner=combiner
            )
            experiments.append(experiment)

    experimenter = Experimenter(log_name, experiments)
    # run the instances
    experimenter.run()

    # output format
    str_format = '{:<15}\t{:<10}\t{:<8}\t{:<8}\t{:<8}\t{:<8}\t{:<18}\t{:<15}\t{:<6}\t{:<8}\t{:<8}\t{:<8}'
    headline = str_format.format(
        'seed_instance', 'seed_model', 'i', 'n', 'k', 'N', 'trans', 'comb', 'iter', 'time', 'accuracy',
        'model_values\n'
    )
    # print the result headline
    stderr.write(headline)

    log_file = open(log_name + '.log', 'r')

    # print the results
    result = log_file.readline()
    while result != '':
        stderr.write(str_format.format(*result.split('\t')))
        result = log_file.readline()

    log_file.close()
Exemplo n.º 11
0
def main(args):
    """
    This method includes the main functionality of the module it parses the argument vector and executes the learning
    attempts on the PUF instances.
    """
    parser = argparse.ArgumentParser(
        prog='sim_learn',
        description="LTF Array Simulator and Logistic Regression Learner",
    )
    parser.add_argument("n", help="number of bits per Arbiter chain", type=int)
    parser.add_argument("k", help="number of Arbiter chains", type=int)
    parser.add_argument(
        "transformation",
        help=
        "used to transform input before it is used in LTFs. Currently available: "
        '"atf,id",'
        '"lightweight_secure",'
        '"permutation_atf",'
        '"polynomial,random",'
        '"shift",'
        '"soelter_lightweight_secure"',
        type=str,
    )
    parser.add_argument(
        'combiner',
        help=
        'used to combine the output bits to a single bit. Currently available: "ip_mod2", "xor"',
        type=str,
    )
    parser.add_argument(
        'N',
        help='number of challenge response pairs in the training set',
        type=int)
    parser.add_argument('restarts',
                        help='number of repeated initializations the learner',
                        type=int)
    parser.add_argument(
        'instances',
        help='number of repeated initializations the instance\n'
        'The number total learning attempts is restarts*instances.',
        type=int,
    )
    parser.add_argument('seed_instance',
                        help='random seed used for LTF array instance',
                        type=str)
    parser.add_argument(
        'seed_model',
        help='random seed used for the model in first learning attempt',
        type=str)
    parser.add_argument(
        '--log_name',
        help=
        'path to the logfile which contains results from all instances. The tool '
        'will add a ".log" to log_name. The default path is ./sim_learn.log',
        default='sim_learn',
        type=str,
    )
    parser.add_argument(
        '--seed_challenges',
        help='random seed used to draw challenges for the training set',
        type=str,
    )
    parser.add_argument('--seed_distance',
                        help='random seed used to calculate the accuracy',
                        type=str)

    args = parser.parse_args(args)

    n = args.n
    k = args.k
    transformation = args.transformation
    combiner = args.combiner
    N = args.N
    restarts = args.restarts

    instances = args.instances

    seed_instance = int(args.seed_instance, 16)
    seed_model = int(args.seed_model, 16)

    seed_challenges = 0x5A551
    if args.seed_challenges is not None:
        seed_challenges = int(args.seed_challenges, 16)
    seed_distance = 0xB055
    if args.seed_distance is not None:
        seed_distance = int(args.seed_distance, 16)

    try:
        getattr(LTFArray, 'transform_%s' % transformation)
    except AttributeError:
        sys.stderr.write(
            'Transformation %s unknown or currently not implemented\n' %
            transformation)
        quit()

    try:
        getattr(LTFArray, 'combiner_%s' % combiner)
    except AttributeError:
        sys.stderr.write('Combiner %s unknown or currently not implemented\n' %
                         combiner)
        quit()

    log_name = args.log_name

    sys.stderr.write(
        'Learning %s-bit %s XOR Arbiter PUF with %s CRPs and %s restarts.\n\n'
        % (n, k, N, restarts))
    sys.stderr.write('Using\n')
    sys.stderr.write('  transformation:       %s\n' % transformation)
    sys.stderr.write('  combiner:             %s\n' % combiner)
    sys.stderr.write('  instance random seed: 0x%x\n' % seed_instance)
    sys.stderr.write('  model random seed:    0x%x\n' % seed_model)
    sys.stderr.write('\n')

    # create different experiment instances
    experimenter = Experimenter(log_name)
    for j in range(instances):
        for start_number in range(restarts):
            l_name = '%s_%i_%i' % (log_name, j, start_number)
            experiment = ExperimentLogisticRegression(
                progress_log_prefix=l_name,
                parameters=Parameters(
                    n=n,
                    k=k,
                    N=N,
                    seed_instance=seed_instance + j,
                    seed_model=seed_model + j + start_number,
                    transformation=transformation,
                    combiner=combiner,
                    seed_challenge=seed_challenges,
                    seed_distance=seed_distance,
                    convergence_decimals=2,
                    mini_batch_size=0,
                    shuffle=False,
                ))
            experimenter.queue(experiment)

    # run the instances
    experimenter.run()
Exemplo n.º 12
0
def main(args):

    parser = argparse.ArgumentParser(
        usage="Experiment to determine the minimum number of votes "
        "required to achieve a desired given stability.\n")
    parser.add_argument(
        "stab_c",
        help="Desired stability of the challenges.",
        type=float,
        choices=[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
    parser.add_argument(
        "stab_all",
        help="Overall desired stability.",
        type=float,
        choices=[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
    parser.add_argument("n",
                        help="Number of bits per Arbiter chain.",
                        type=int,
                        choices=[8, 16, 24, 32, 48, 64, 128])
    parser.add_argument("k_max",
                        help="Maximum number of Arbiter chains.",
                        type=int)
    parser.add_argument(
        "k_range",
        help="Number of step size between the number of Arbiter chains",
        type=int,
        choices=range(1, 33))
    parser.add_argument(
        "s_ratio",
        help="Ratio of standard deviation of the noise and weights",
        type=float)
    parser.add_argument("N",
                        help="Number of challenges to evaluate",
                        type=int,
                        choices=range(10, 10001, 10))
    parser.add_argument("restarts",
                        help="Number of restarts to the entire process",
                        type=int)
    args = parser.parse_args(args)

    if args.k_max <= 0:
        stderr.write("Negative maximum number of Arbiter chains")
        quit(1)

    seed_challenges = 0xf000
    iterations = 10
    n = args.n
    N = args.N

    # perform search for minimum number of votes required for each k
    experiments = []
    for i in range(args.restarts):
        for k in range(args.k_range, args.k_max + 1, args.k_range):
            log_name = 'exp{0}'.format(k)
            exp = ExperimentMajorityVoteFindVotes(
                log_name=log_name,
                n=n,
                k=k,
                challenge_count=N,
                seed_instance=0xC0DEBA5E + i,
                seed_instance_noise=0xdeadbeef + i,
                transformation=LTFArray.transform_id,
                combiner=LTFArray.combiner_xor,
                mu=0,
                sigma=1,
                sigma_noise_ratio=args.s_ratio,
                seed_challenges=seed_challenges + i,
                desired_stability=args.stab_c,
                overall_desired_stability=args.stab_all,
                minimum_vote_count=1,
                iterations=iterations,
                bias=False)
            experiments.append(exp)

    experimenter = Experimenter('mv', experiments)
    experimenter.run()
Exemplo n.º 13
0
    def test_multiprocessing_logs(self):
        """
        This test checks for the predicted amount for result.
        """
        experimenter_log_name = LOG_PATH + 'test_multiprocessing_logs'
        experimenter = Experimenter(experimenter_log_name)

        n = 4
        for i in range(n):
            log_name = LOG_PATH + 'test_multiprocessing_logs{0}'.format(i)
            experimenter.queue(
                ExperimentLogisticRegression(
                    log_name,
                    LRParameters(
                        n=8,
                        k=2,
                        N=2**8,
                        seed_challenge=0xbeef,
                        seed_instance=0xbeef,
                        seed_distance=0xf00,
                        seed_model=0x1,
                        transformation='id',
                        combiner='xor',
                        convergence_decimals=2,
                        mini_batch_size=0,
                        shuffle=False,
                    )))

        for i in range(n):
            log_name = LOG_PATH + 'test_multiprocessing_logs{0}'.format(i)
            experiment = ExperimentMajorityVoteFindVotes(
                progress_log_prefix=log_name,
                parameters=MVParameters(n=8,
                                        k=2,
                                        challenge_count=2**8,
                                        seed_instance=0xC0DEBA5E,
                                        seed_instance_noise=0xdeadbeef,
                                        transformation='id',
                                        combiner='xor',
                                        mu=0,
                                        sigma=1,
                                        sigma_noise_ratio=NoisyLTFArray.
                                        sigma_noise_from_random_weights(
                                            n, 1, .5),
                                        seed_challenges=0xf000 + i,
                                        desired_stability=0.95,
                                        overall_desired_stability=0.6,
                                        minimum_vote_count=1,
                                        iterations=2,
                                        bias=None))
            experimenter.queue(experiment)

        experimenter.run()

        def line_count(file_object):
            """
            :param file_object:
            :return: number of lines
            """
            count = 0
            while file_object.readline() != '':
                count = count + 1
            return count

        paths = list(glob.glob('logs/' + LOG_PATH + '*.log'))
        # Check if the number of lines is greater than zero
        for log_path in paths:
            exp_log_file = open(log_path, 'r')
            self.assertGreater(
                line_count(exp_log_file), 0,
                'The experiment log {} is empty.'.format(log_path))
            exp_log_file.close()

        # Check if the number of results is correct
        with open('logs/' + experimenter_log_name + '.log', 'r') as log_file:
            self.assertEqual(line_count(log_file), 2 * n,
                             'Unexpected number of results')
Exemplo n.º 14
0
def main(args):
    """
    This method starts several experiments in order to find the minimal number of votes required to satisfy an
    the desired stability of challenges.
    """
    parser = argparse.ArgumentParser(
        usage="Experiment to determine the minimum number of votes "
        "required to achieve a desired given stability.\n")
    parser.add_argument(
        "stab_c",
        help="Desired stability of the challenges",
        type=float,
        choices=[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
    parser.add_argument(
        "stab_all",
        help="Overall desired stability",
        type=float,
        choices=[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
    parser.add_argument("n",
                        help="Number of bits per Arbiter chain",
                        type=int,
                        choices=[8, 16, 24, 32, 48, 64, 128])
    parser.add_argument("k_max",
                        help="Maximum number of Arbiter chains",
                        type=int)
    parser.add_argument(
        "k_range",
        help="Number of step size between the number of Arbiter chains",
        type=int,
        choices=range(1, 33))
    parser.add_argument(
        "s_ratio",
        help="Ratio of standard deviation of the noise and weights",
        type=float)
    parser.add_argument("N", help="Number of challenges to evaluate", type=int)
    parser.add_argument("restarts",
                        help="Number of restarts to the entire process",
                        type=int)
    parser.add_argument("--log_name",
                        help="Path to the main log file.",
                        type=str,
                        default='my_num_of_votes')
    args = parser.parse_args(args)

    if args.k_max <= 0:
        stderr.write("Negative maximum number of Arbiter chains")
        quit(1)

    seed_challenges = 0xf000
    iterations = 10
    n = args.n
    N = args.N

    # perform search for minimum number of votes required for each k
    experimenter = Experimenter(args.log_name)
    for i in range(args.restarts):
        for k in range(args.k_range, args.k_max + 1, args.k_range):
            log_name = args.log_name + '{0}'.format(k)
            experimenter.queue(
                ExperimentMajorityVoteFindVotes(
                    progress_log_prefix=log_name,
                    parameters=Parameters(
                        n=n,
                        k=k,
                        challenge_count=N,
                        seed_instance=0xC0DEBA5E + i,
                        seed_instance_noise=0xdeadbeef + i,
                        transformation='id',
                        combiner='xor',
                        mu=0,
                        sigma=1,
                        sigma_noise_ratio=args.s_ratio,
                        seed_challenges=seed_challenges + i,
                        desired_stability=args.stab_c,
                        overall_desired_stability=args.stab_all,
                        minimum_vote_count=1,
                        iterations=iterations,
                        bias=None)))

    experimenter.run()