Exemplo n.º 1
0
    def test_bias_influence_array(self):
        """
        This method tests the influence of the bias array. The results should be different.
        """
        n = 8
        k = 4
        mu = 1
        sigma = 0.5

        challenges = tools.all_inputs(n)

        weight_array = NoisyLTFArray.normal_weights(
            n, k, mu=mu, sigma=sigma, random_instance=RandomState(0xBADA556))
        bias_array = NoisyLTFArray.normal_weights(
            1,
            k,
            mu=mu,
            sigma=sigma * 2,
            random_instance=RandomState(0xBADAFF1))

        biased_ltf_array = NoisyLTFArray(
            weight_array=weight_array,
            transform=NoisyLTFArray.transform_id,
            combiner=NoisyLTFArray.combiner_xor,
            sigma_noise=sigma,
            bias=bias_array,
        )
        ltf_array = NoisyLTFArray(
            weight_array=weight_array,
            transform=NoisyLTFArray.transform_id,
            combiner=NoisyLTFArray.combiner_xor,
            sigma_noise=sigma,
            bias=None,
        )
        self.assertEqual(ltf_array.weight_array.shape,
                         biased_ltf_array.weight_array.shape)

        bias_array = biased_ltf_array.weight_array[:, -1]
        bias_array_compared = [
            bias == bias_array[0] for bias in bias_array[1:]
        ]
        # the bias values should be different for this test. It is possible that they are all equal but this chance is
        # low.
        self.assertFalse(array(bias_array_compared).all())

        biased_responses = biased_ltf_array.eval(challenges)
        responses = ltf_array.eval(challenges)

        # The arithmetic mean of the res
        self.assertFalse(array_equal(biased_responses, responses))
Exemplo n.º 2
0
    def test_reliability(self):
        """This method tests the test_reliability calculation."""
        n = 8
        k = 8
        N = 2**n
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor
        instance = LTFArray(
            weight_array=LTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1)),
            transform=transformation,
            combiner=combiner,
        )
        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB1A))
        reliabilities = []
        for challenge in challenges:
            reliabilities.append(
                PropertyTest.reliability(instance, reshape(challenge, (1, n))))

        # For noiseless simulations the responses are always the same hence the reliability is 0%
        assert_array_equal(reliabilities, repeat(0.0, N))

        noisy_instance = NoisyLTFArray(
            weight_array=NoisyLTFArray.normal_weights(
                n=n, k=k, random_instance=RandomState(0xA1A1)),
            transform=transformation,
            combiner=combiner,
            sigma_noise=15.0,
            random_instance=RandomState(0x5015E),
        )
        for challenge in challenges:
            reliability = PropertyTest.reliability(noisy_instance,
                                                   reshape(challenge, (1, n)))
            # For noisy simulations the responses should vary
            self.assertNotEqual(reliability, 0.0)
Exemplo n.º 3
0
def example_reliability():
    """This method shows how to use the PropertyTest.reliability function."""
    n = 8
    k = 8
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instance = NoisyLTFArray(
        weight_array=weights,
        transform=transformation,
        combiner=combiner,
        sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(n, 0.5))
    challenge = array([-1, 1, 1, 1, -1, 1, 1, 1])
    reliability = PropertyTest.reliability(instance,
                                           reshape(challenge, (1, n)))
    print('The reliability is {}.'.format(reliability))
Exemplo n.º 4
0
    def test_reliability_set(self):
        """This method tests the reliability_statistic calculation."""
        n = 8
        k = 3
        N = 2**n
        measurements = 10
        transformation = LTFArray.transform_id
        combiner = LTFArray.combiner_xor
        instances = []
        instance_count = 3
        for i in range(instance_count):
            instance = LTFArray(
                weight_array=LTFArray.normal_weights(
                    n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                transform=transformation,
                combiner=combiner,
            )
            instances.append(instance)

        challenges = sample_inputs(n, N, random_instance=RandomState(0xFAB0))

        reliability_set = PropertyTest.reliability_set(
            instances, challenges, measurements=measurements)
        # The result is an array like with N * k entries.
        self.assertEqual(len(reliability_set), N * instance_count)
        # For noiseless simulations the all reliabilities must be 0%
        assert_array_equal(reliability_set, repeat(0.0, N * instance_count))

        noisy_instances = []
        for i in range(instance_count):
            noisy_instance = NoisyLTFArray(
                weight_array=NoisyLTFArray.normal_weights(
                    n=n, k=k, random_instance=RandomState(0xA1A1 + i)),
                transform=transformation,
                combiner=combiner,
                sigma_noise=0.5,
                random_instance=RandomState(0x5015C + i),
            )
            noisy_instances.append(noisy_instance)

        noisy_reliability_set = PropertyTest.reliability_set(
            noisy_instances, challenges, measurements=measurements)
        # For a noisy simulation the mean reliability must differ from zero
        self.assertNotEqual(mean(noisy_reliability_set), 0.0)
Exemplo n.º 5
0
    def test_bias_influence_value(self):
        """
        This method tests the influence of the bias value. The results should be different.
        """
        n = 8
        k = 4
        mu = 1
        sigma = 0.5

        challenges = array(list(tools.all_inputs(n)))

        weight_array = NoisyLTFArray.normal_weights(n, k, mu=mu, sigma=sigma, random_instance=RandomState(0xBADA556))
        bias_value = 2.5

        biased_ltf_array = NoisyLTFArray(
            weight_array=weight_array,
            transform=NoisyLTFArray.transform_id,
            combiner=NoisyLTFArray.combiner_xor,
            sigma_noise=sigma,
            bias=bias_value,
        )
        ltf_array = NoisyLTFArray(
            weight_array=weight_array,
            transform=NoisyLTFArray.transform_id,
            combiner=NoisyLTFArray.combiner_xor,
            sigma_noise=sigma,
            bias=None,
        )
        # the second dimension of the weight_array plus one must be the number of elements in biased weight_array
        self.assertEqual(shape(ltf_array.weight_array)[1]+1, shape(biased_ltf_array.weight_array)[1])

        bias_array = biased_ltf_array.weight_array[:, -1]
        bias_array_compared = [bias == bias_array[0] for bias in bias_array]
        # the bias values should be equal for this test.
        self.assertTrue(array(list(bias_array_compared)).all())

        biased_responses = biased_ltf_array.eval(challenges)
        responses = ltf_array.eval(challenges)

        # The arithmetic mean of the res
        self.assertFalse(array_equal(biased_responses, responses))
Exemplo n.º 6
0
def example_uniqueness():
    """
    This method shows the function which can be used to calculate the uniqueness of a set of simulation instances.
    """
    n = 8
    k = 1
    instance_count = 3
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instances = [
        NoisyLTFArray(
            weight_array=weights,
            transform=transformation,
            combiner=combiner,
            sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(
                n, weights)) for _ in range(instance_count)
    ]
    challenge = array([-1, 1, 1, 1, -1, 1, 1, 1])
    uniqueness = PropertyTest.uniqueness(instances, reshape(challenge, (1, n)))
    print('The uniqueness is {}.'.format(uniqueness))
Exemplo n.º 7
0
def example_reliability_statistic():
    """This method shows hot to use the PropertyTest.reliability_statistic."""
    n = 8
    k = 1
    N = 2**n
    instance_count = 3
    measurements = 100
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instances = [
        NoisyLTFArray(
            weight_array=weights,
            transform=transformation,
            combiner=combiner,
            sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(n, 0.5))
        for _ in range(instance_count)
    ]
    challenges = array(list(sample_inputs(n, N)))
    property_test = PropertyTest(instances)
    reliability_statistic = property_test.reliability_statistic(
        challenges, measurements=measurements)
    print('The reliability statistic is {}.'.format(reliability_statistic))
Exemplo n.º 8
0
def example_uniqueness_statistic():
    """This method shows the uniqueness statistic function."""
    n = 8
    k = 1
    N = 2**n
    instance_count = 11
    measurements = 1
    transformation = NoisyLTFArray.transform_id
    combiner = NoisyLTFArray.combiner_xor
    weights = NoisyLTFArray.normal_weights(n=n, k=k)
    instances = [
        NoisyLTFArray(
            weight_array=weights,
            transform=transformation,
            combiner=combiner,
            sigma_noise=NoisyLTFArray.sigma_noise_from_random_weights(
                n, weights)) for _ in range(instance_count)
    ]

    challenges = array(list(sample_inputs(n, N)))
    property_test = PropertyTest(instances)
    uniqueness_statistic = property_test.uniqueness_statistic(
        challenges, measurements=measurements)
    print('The uniqueness statistic is {}.'.format(uniqueness_statistic))