Exemplo n.º 1
0
def run_tests(wf, epos, epsilon):

    _, epos = pyq.vmc(wf, epos, nblocks=1, nsteps=2, tstep=1)  # move off node

    for k, item in testwf.test_updateinternals(wf, epos).items():
        print(k, item)
        assert item < epsilon

    testwf.test_mask(wf, 0, epos)

    for fname, func in zip(
        ["gradient", "laplacian", "pgradient"],
        [
            testwf.test_wf_gradient,
            testwf.test_wf_laplacian,
            testwf.test_wf_pgradient,
        ],
    ):
        err = [
            func(wf, epos, delta) for delta in [1e-4, 1e-5, 1e-6, 1e-7, 1e-8]
        ]
        assert min(err) < epsilon, "epsilon {0}".format(epsilon)

    for fname, func in zip(
        ["gradient_value", "gradient_laplacian"],
        [
            testwf.test_wf_gradient_value,
            testwf.test_wf_gradient_laplacian,
        ],
    ):
        d = func(wf, epos)
        for k, v in d.items():
            assert v < 1e-10, (k, v)
Exemplo n.º 2
0
def run_optimization_best_practice_2states(**kwargs):
    """
    First optimize the ground state and then optimize the excited
    states while fixing the 
    """

    mol, mf, mc = H2_casci()
    import copy
    mf.output = None
    mol.output = None
    mc.output = None
    mc.stdout = None
    mol.stdout = None
    mc.stdout = None
    nstates = 2
    mcs = [copy.copy(mc) for i in range(nstates)]
    for i in range(nstates):
        mcs[i].ci = mc.ci[i]

    wfs = []
    to_opts = []
    for i in range(nstates):
        wf, to_opt = pyq.generate_wf(
            mol, mf, mc=mcs[i], slater_kws=dict(optimize_determinants=True))
        wfs.append(wf)
        to_opts.append(to_opt)
    configs = pyq.initial_guess(mol, 1000)

    pgrad1 = pyq.gradient_generator(mol, wfs[0], to_opt=to_opts[0])
    wfs[0], _ = pyq.line_minimization(wfs[0],
                                      configs,
                                      pgrad1,
                                      verbose=True,
                                      max_iterations=10)

    for k in to_opts[0]:
        to_opts[0][k] = np.zeros_like(to_opts[0][k])
    to_opts[0]['wf1det_coeff'][0] = True  #Bug workaround for linear transform
    for to_opt in to_opts[1:]:
        to_opt['wf1det_coeff'] = np.ones_like(to_opt['wf1det_coeff'])

    transforms = [
        pyqmc.accumulators.LinearTransform(wf.parameters, to_opt)
        for wf, to_opt in zip(wfs, to_opts)
    ]
    for wf in wfs[1:]:
        for k in wf.parameters.keys():
            if 'wf2' in k:
                wf.parameters[k] = wfs[0].parameters[k].copy()
    _, configs = pyq.vmc(wfs[0], configs)
    energy = pyq.EnergyAccumulator(mol)
    return optimize(wfs, configs, energy, transforms, **kwargs)
def test_sampler(H2_casci):

    mol, mf, mc = H2_casci

    ci_energies= mc.e_tot
    mc1 = copy.copy(mc)
    mc2 = copy.copy(mc)
    mc1.ci = mc.ci[0]
    mc2.ci = (mc.ci[0]+mc.ci[1])/np.sqrt(2)

    wf1, to_opt1 = pyq.generate_slater(mol, mf,mc=mc1, optimize_determinants=True)
    wf2, to_opt2 = pyq.generate_slater(mol, mf, mc=mc2, optimize_determinants=True)
    for to_opt in [to_opt1, to_opt2]:
        to_opt['det_coeff'] = np.ones_like(to_opt['det_coeff'],dtype=bool)

    transform1 = pyqmc.accumulators.LinearTransform(wf1.parameters,to_opt1)
    transform2 = pyqmc.accumulators.LinearTransform(wf2.parameters,to_opt2)
    configs = pyq.initial_guess(mol, 2000)
    _, configs = pyq.vmc(wf1, configs)
    energy =pyq.EnergyAccumulator(mol)
    data_weighted, data_unweighted, configs = sample_overlap_worker([wf1,wf2],configs, energy, [transform1,transform2], nsteps=40, nblocks=20)
    avg, error = average(data_weighted, data_unweighted)
    print(avg, error)

    ref_energy1 = 0.5*(ci_energies[0] + ci_energies[1])
    assert abs(avg['total'][1,1] - ref_energy1) < 3*error['total'][1][1]

    ref_energy01 = ci_energies[0]/np.sqrt(2)
    assert abs(avg['total'][0,1] - ref_energy01) < 3*error['total'][0,1]

    overlap_tolerance = 0.2# magic number..be careful.
    terms = collect_terms(avg,error)

    norm = [np.sum(np.abs(m.ci)**2) for m in [mc1,mc2]]
    norm_ref = norm
    assert np.all( np.abs(norm_ref - terms['norm']) < overlap_tolerance) 

    norm_derivative_ref = 2*np.real(mc2.ci).flatten() 
    print(terms[('dp_norm',1)].shape, norm_derivative_ref.shape)
    assert np.all(np.abs(norm_derivative_ref - terms[('dp_norm',1)])<overlap_tolerance)

    overlap_ref = np.sum(mc1.ci*mc2.ci) 
    print('overlap test', overlap_ref, terms['overlap'][0,1])
    assert abs(overlap_ref - terms['overlap'][0,1]) < overlap_tolerance

    overlap_derivative_ref = (mc1.ci.flatten() - 0.5*overlap_ref * norm_derivative_ref) 
    assert np.all( np.abs(overlap_derivative_ref - terms[('dp_overlap',1)][:,0,1]) < overlap_tolerance)

    en_derivative = take_derivative_casci_energy(mc, mc2.ci)
    assert(np.all(abs(terms[('dp_energy',1)][:,1,1].reshape(mc2.ci.shape)-en_derivative) -overlap_tolerance) )
    derivative = objective_function_derivative(terms,1.0, norm_relative_penalty=1.0, offdiagonal_energy_penalty=0.1)
def test_correlated_sampling(H2_casci):

    mol, mf, mc = H2_casci

    ci_energies= mc.e_tot
    import copy
    mc1 = copy.copy(mc)
    mc2 = copy.copy(mc)
    mc1.ci = mc.ci[0]
    mc2.ci = mc.ci[1]

    wf1, to_opt1 = pyq.generate_slater(mol, mf,mc=mc1, optimize_determinants=True)
    wf2, to_opt2 = pyq.generate_slater(mol, mf, mc=mc2, optimize_determinants=True)
    for to_opt in [to_opt1, to_opt2]:
        to_opt['det_coeff'] = np.ones_like(to_opt['det_coeff'],dtype=bool)

    transform1 = pyqmc.accumulators.LinearTransform(wf1.parameters,to_opt1)
    transform2 = pyqmc.accumulators.LinearTransform(wf2.parameters,to_opt2)
    configs = pyq.initial_guess(mol, 1000)
    _, configs = pyq.vmc(wf1, configs)
    energy =pyq.EnergyAccumulator(mol)
    data_weighted, data_unweighted, configs = sample_overlap_worker([wf1,wf2],configs, energy, [transform1,transform2], nsteps=10, nblocks=10)

    parameters1 = transform1.serialize_parameters(wf1.parameters)
    parameters2 = transform1.serialize_parameters(wf2.parameters)
    sample_parameters = []
    energies_reference = []
    overlap_reference = []
    for theta in np.linspace(0,np.pi/2, 4):
        a = np.cos(theta)
        b = np.sin(theta)
        sample_parameters.append([a*parameters1 + b*parameters2, a*parameters1 - b*parameters2])
        energies_reference.append([a**2*ci_energies[0] + b**2*ci_energies[1]]*2)
        overlap_reference.append([[1.0, a**2-b**2], [a**2-b**2,1.0]]  )
    energies_reference=np.asarray(energies_reference)
    overlap_reference=np.asarray(overlap_reference)
    correlated_results = correlated_sampling([wf1,wf2], configs,energy, [transform1,transform2], sample_parameters )
    print(correlated_results)
    energy_sample = correlated_results['energy']/correlated_results['overlap']
    print('energy reference',energies_reference)
    print('energy sample', energy_sample)

    assert np.all(np.abs(energy_sample.diagonal(axis1=1,axis2=2) - energies_reference) < 0.1)

    print('overlap sample', correlated_results['overlap'])

    print('overlap reference', overlap_reference)
    assert np.all(np.abs(correlated_results['overlap']-overlap_reference)<0.1)
Exemplo n.º 5
0
def test_shci_wf_is_better(H2_ccecp_hci):
    mol, mf, cisolver = H2_ccecp_hci

    configs = pyq.initial_guess(mol, 1000)
    wf = Slater(mol, mf, cisolver, tol=0.0)
    data, configs = pyq.vmc(
        wf,
        configs,
        nblocks=40,
        verbose=True,
        accumulators={"energy": pyq.EnergyAccumulator(mol)},
    )
    en, err = avg(data["energytotal"][1:])
    nsigma = 4
    assert len(wf.parameters["det_coeff"]) == len(cisolver.ci)
    assert en - nsigma * err < mf.e_tot
    assert en + nsigma * err > cisolver.energy
Exemplo n.º 6
0
def runtest(mol, mf, kind=0):
    kpt = mf.kpts[kind]
    dm = mf.make_rdm1()
    print("original dm shape", dm.shape)
    if len(dm.shape) == 4:
        dm = np.sum(dm, axis=0)
    dm = dm[kind]

    #####################################
    ## evaluate KE in PySCF
    #####################################
    ke_mat = mol.pbc_intor("int1e_kin", hermi=1, kpts=np.array(kpt))
    print("ke_mat", ke_mat.shape)
    print("dm", dm.shape)
    pyscfke = np.real(np.einsum("ij,ji->", ke_mat, dm))
    print("PySCF kinetic energy: {0}".format(pyscfke))

    #####################################
    ## evaluate KE integral with VMC
    #####################################
    wf = Slater(mol, mf)
    coords = pyq.initial_guess(mol, 1200, 0.7)
    warmup = 10
    start = time.time()
    df, coords = pyq.vmc(
        wf,
        coords,
        nsteps=100 + warmup,
        tstep=1,
        accumulators={"energy": pyq.EnergyAccumulator(mol)},
        verbose=False,
        hdf_file=str(uuid.uuid4()),
    )
    print("VMC time", time.time() - start)

    df = pd.DataFrame(df)
    dfke = pyq.avg_reblock(df["energyke"][warmup:], 10)
    vmcke, err = dfke.mean(), dfke.sem()
    print("VMC kinetic energy: {0} +- {1}".format(vmcke, err))

    assert (
        np.abs(vmcke - pyscfke) < 5 * err
    ), "energy diff not within 5 sigma ({0:.6f}): energies \n{1} \n{2}".format(
        5 * err, vmcke, pyscfke
    )
Exemplo n.º 7
0
def test_casci_energy(H2_ccecp_casci_s0):
    """
    Checks that VMC energy matches energy calculated in PySCF
    """
    nsteps = 200
    warmup = 10

    mol, mf, mc = H2_ccecp_casci_s0
    wf = Slater(mol, mf, mc)
    nconf = 1000
    coords = pyq.initial_guess(mol, nconf)
    df, coords = pyq.vmc(
        wf, coords, nsteps=nsteps, accumulators={"energy": EnergyAccumulator(mol)}
    )

    df = pd.DataFrame(df)
    df = pyq.avg_reblock(df["energytotal"][warmup:], 20)
    en = df.mean()
    err = df.sem()
    assert en - mc.e_tot < 5 * err
Exemplo n.º 8
0
def test_pbc_wfs(H_pbc_sto3g_krks, epsilon=1e-5, nconf=10):
    """
    Ensure that the wave function objects are consistent in several situations.
    """
    mol, mf = H_pbc_sto3g_krks

    supercell = pyq.get_supercell(mol, S=(np.ones((3, 3)) - 2 * np.eye(3)))
    epos = pyq.initial_guess(supercell, nconf)
    for wf in [
            MultiplyWF(Slater(supercell, mf),
                       generate_jastrow(supercell)[0]),
            Slater(supercell, mf),
    ]:
        for k in wf.parameters:
            if "mo_coeff" not in k and k != "det_coeff":
                wf.parameters[k] = cp.asarray(
                    np.random.rand(*wf.parameters[k].shape))

        _, epos = pyq.vmc(wf, epos, nblocks=1, nsteps=2,
                          tstep=1)  # move off node
        run_tests(wf, epos, epsilon)