Exemplo n.º 1
0
    def train_argmax_policy(
        load_dir: pyrado.PathLike,
        env_sim: MetaDomainRandWrapper,
        subrtn: Algorithm,
        num_restarts: int,
        num_samples: int,
        policy_param_init: to.Tensor = None,
        valuefcn_param_init: to.Tensor = None,
        subrtn_snapshot_mode: str = "best",
    ) -> Policy:
        """
        Train a policy based on the maximizer of the posterior mean.

        :param load_dir: directory to load from
        :param env_sim: simulation environment
        :param subrtn: algorithm which performs the policy / value-function optimization
        :param num_restarts: number of restarts for the optimization of the acquisition function
        :param num_samples: number of samples for the optimization of the acquisition function
        :param policy_param_init: initial policy parameter values for the subroutine, set `None` to be random
        :param valuefcn_param_init: initial value function parameter values for the subroutine, set `None` to be random
        :param subrtn_snapshot_mode: snapshot mode for saving during training of the subroutine
        :return: the final BayRn policy
        """
        # Load the required data
        cands = pyrado.load("candidates.pt", load_dir)
        cands_values = pyrado.load("candidates_values.pt",
                                   load_dir).unsqueeze(1)
        ddp_space = pyrado.load("ddp_space.pkl", load_dir)

        if cands.shape[0] > cands_values.shape[0]:
            print_cbt(
                f"There are {cands.shape[0]} candidates but only {cands_values.shape[0]} evaluations. Ignoring the"
                f"candidates without evaluation for computing the argmax.",
                "y",
            )
            cands = cands[:cands_values.shape[0], :]

        # Find the maximizer
        argmax_cand = BayRn.argmax_posterior_mean(cands, cands_values,
                                                  ddp_space, num_restarts,
                                                  num_samples)

        # Set the domain randomizer
        env_sim.adapt_randomizer(argmax_cand.numpy())

        # Reset the subroutine algorithm which includes resetting the exploration
        subrtn.reset()

        # Do a warm start
        subrtn.init_modules(warmstart=True,
                            policy_param_init=policy_param_init,
                            valuefcn_param_init=valuefcn_param_init)

        subrtn.train(snapshot_mode=subrtn_snapshot_mode,
                     meta_info=dict(suffix="argmax"))
        return subrtn.policy
Exemplo n.º 2
0
    def train_argmax_policy(load_dir: str,
                            env_sim: MetaDomainRandWrapper,
                            subroutine: Algorithm,
                            num_restarts: int,
                            num_samples: int,
                            policy_param_init: to.Tensor = None,
                            valuefcn_param_init: to.Tensor = None) -> Policy:
        """
        Train a policy based on the maximizer of the posterior mean.

        :param load_dir: directory to load from
        :param env_sim: simulation environment
        :param subroutine: algorithm which performs the policy / value-function optimization
        :param num_restarts: number of restarts for the optimization of the acquisition function
        :param num_samples: number of samples for the optimization of the acquisition function
        :param policy_param_init: initial policy parameter values for the subroutine, set `None` to be random
        :param valuefcn_param_init: initial value function parameter values for the subroutine, set `None` to be random
        :return: the final BayRn policy
        """
        # Load the required data
        cands = to.load(osp.join(load_dir, 'candidates.pt'))
        cands_values = to.load(osp.join(load_dir,
                                        'candidates_values.pt')).unsqueeze(1)
        bounds = to.load(osp.join(load_dir, 'bounds.pt'))
        uc_normalizer = UnitCubeProjector(bounds[0, :], bounds[1, :])

        # Find the maximizer
        argmax_cand = BayRn.argmax_posterior_mean(cands, cands_values,
                                                  uc_normalizer, num_restarts,
                                                  num_samples)

        # Set the domain randomizer given the hyper-parameters
        env_sim.adapt_randomizer(argmax_cand.numpy())

        # Reset the subroutine's algorithm which includes resetting the exploration
        subroutine.reset()

        # Reset the subroutine's policy (and value function)
        subroutine.policy.init_param(policy_param_init)
        if isinstance(subroutine, ActorCritic):
            subroutine.critic.value_fcn.init_param(valuefcn_param_init)
        if policy_param_init is None:
            print_cbt('Learning the argmax solution from scratch', 'y')
        else:
            print_cbt('Learning the argmax solution given an initialization',
                      'y')

        subroutine.train(
            snapshot_mode='best')  # meta_info=dict(prefix='final')
        return subroutine.policy
Exemplo n.º 3
0
def create_qqsu_setup():
    # Environments
    env_hparams = dict(dt=1 / 100.0, max_steps=600)
    env_real = QQubeSwingUpSim(**env_hparams)
    env_real.domain_param = dict(
        mass_rot_pole=0.095 * 0.9,  # 0.095*0.9 = 0.0855
        mass_pend_pole=0.024 * 1.1,  # 0.024*1.1 = 0.0264
        length_rot_pole=0.085 * 0.9,  # 0.085*0.9 = 0.0765
        length_pend_pole=0.129 * 1.1,  # 0.129*1.1 = 0.1419
    )

    env_sim = QQubeSwingUpSim(**env_hparams)
    randomizer = DomainRandomizer(
        NormalDomainParam(name="mass_rot_pole",
                          mean=0.0,
                          std=1e-9,
                          clip_lo=1e-3),
        NormalDomainParam(name="mass_pend_pole",
                          mean=0.0,
                          std=1e-9,
                          clip_lo=1e-3),
        NormalDomainParam(name="length_rot_pole",
                          mean=0.0,
                          std=1e-9,
                          clip_lo=1e-3),
        NormalDomainParam(name="length_pend_pole",
                          mean=0.0,
                          std=1e-9,
                          clip_lo=1e-3),
    )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {
        0: ("mass_rot_pole", "mean"),
        1: ("mass_rot_pole", "std"),
        2: ("mass_pend_pole", "mean"),
        3: ("mass_pend_pole", "std"),
        4: ("length_rot_pole", "mean"),
        5: ("length_rot_pole", "std"),
        6: ("length_pend_pole", "mean"),
        7: ("length_pend_pole", "std"),
    }
    # trafo_mask = [False, True, False, True, False, True, False, True]
    trafo_mask = [True] * 8
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    # Policies (the behavioral policy needs to be deterministic)
    behavior_policy = QQubeSwingUpAndBalanceCtrl(env_sim.spec)
    prior = DomainRandomizer(
        NormalDomainParam(name="mass_rot_pole", mean=0.095, std=0.095 / 10),
        NormalDomainParam(name="mass_pend_pole", mean=0.024, std=0.024 / 10),
        NormalDomainParam(name="length_rot_pole", mean=0.085, std=0.085 / 10),
        NormalDomainParam(name="length_pend_pole", mean=0.129, std=0.129 / 10),
    )
    ddp_policy = DomainDistrParamPolicy(mapping=dp_map,
                                        trafo_mask=trafo_mask,
                                        prior=prior,
                                        scale_params=False)

    return env_sim, env_real, env_hparams, dp_map, behavior_policy, ddp_policy
Exemplo n.º 4
0
def test_bayrn_power(ex_dir, env: SimEnv, bayrn_hparam: dict):
    pyrado.set_seed(0)

    # Environments and domain randomization
    env_real = deepcopy(env)
    env_sim = DomainRandWrapperLive(env, create_zero_var_randomizer(env))
    dp_map = create_default_domain_param_map_qq()
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)
    env_real.domain_param = dict(mass_pend_pole=0.024 * 1.1,
                                 mass_rot_pole=0.095 * 1.1)
    env_real = wrap_like_other_env(env_real, env_sim)

    # Policy and subroutine
    policy_hparam = dict(energy_gain=0.587, ref_energy=0.827)
    policy = QQubeSwingUpAndBalanceCtrl(env_sim.spec, **policy_hparam)
    subrtn_hparam = dict(
        max_iter=1,
        pop_size=8,
        num_init_states_per_domain=1,
        num_is_samples=4,
        expl_std_init=0.1,
        num_workers=1,
    )
    subrtn = PoWER(ex_dir, env_sim, policy, **subrtn_hparam)

    # Set the boundaries for the GP
    dp_nom = inner_env(env_sim).get_nominal_domain_param()
    ddp_space = BoxSpace(
        bound_lo=np.array([
            0.8 * dp_nom["mass_pend_pole"], 1e-8,
            0.8 * dp_nom["mass_rot_pole"], 1e-8
        ]),
        bound_up=np.array([
            1.2 * dp_nom["mass_pend_pole"], 1e-7,
            1.2 * dp_nom["mass_rot_pole"], 1e-7
        ]),
    )

    # Create algorithm and train
    algo = BayRn(ex_dir,
                 env_sim,
                 env_real,
                 subrtn,
                 ddp_space,
                 **bayrn_hparam,
                 num_workers=1)
    algo.train()

    assert algo.curr_iter == algo.max_iter or algo.stopping_criterion_met()
Exemplo n.º 5
0
def create_bob_setup():
    # Environments
    env_hparams = dict(dt=1 / 100., max_steps=500)
    env_real = BallOnBeamSim(**env_hparams)
    env_real.domain_param = dict(
        # l_beam=1.95,
        # ang_offset=-0.03,
        g=10.81)

    env_sim = BallOnBeamSim(**env_hparams)
    randomizer = DomainRandomizer(
        # NormalDomainParam(name='l_beam', mean=0, std=1e-12, clip_lo=1.5, clip_up=3.5),
        # UniformDomainParam(name='ang_offset', mean=0, halfspan=1e-12),
        NormalDomainParam(name='g', mean=0, std=1e-12), )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {
        # 0: ('l_beam', 'mean'), 1: ('l_beam', 'std'),
        # 2: ('ang_offset', 'mean'), 3: ('ang_offset', 'halfspan')
        0: ('g', 'mean'),
        1: ('g', 'std')
    }
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    # Policies (the behavioral policy needs to be deterministic)
    behavior_policy = LinearPolicy(env_sim.spec,
                                   feats=FeatureStack(
                                       [identity_feat, sin_feat]))
    behavior_policy.param_values = to.tensor(
        [3.8090, -3.8036, -1.0786, -2.4510, -0.9875, -1.3252, 3.1503, 1.4443])
    prior = DomainRandomizer(
        # NormalDomainParam(name='l_beam', mean=2.05, std=2.05/10),
        # UniformDomainParam(name='ang_offset', mean=0.03, halfspan=0.03/10),
        NormalDomainParam(name='g', mean=8.81, std=8.81 / 10), )
    # trafo_mask = [False, True, False, True]
    trafo_mask = [True, True]
    ddp_policy = DomainDistrParamPolicy(mapping=dp_map,
                                        trafo_mask=trafo_mask,
                                        prior=prior,
                                        scale_params=True)

    return env_sim, env_real, env_hparams, dp_map, behavior_policy, ddp_policy
Exemplo n.º 6
0
                          std=1e6,
                          clip_lo=1e-3),
    )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {
        0: ("mass_rot_pole", "mean"),
        1: ("mass_rot_pole", "std"),
        2: ("mass_pend_pole", "mean"),
        3: ("mass_pend_pole", "std"),
        4: ("length_rot_pole", "mean"),
        5: ("length_rot_pole", "std"),
        6: ("length_pend_pole", "mean"),
        7: ("length_pend_pole", "std"),
    }
    trafo_mask = [False, True, False, True, False, True, False, True]
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    # Subroutine for policy improvement
    behav_policy_hparam = dict(hidden_sizes=[64, 64], hidden_nonlin=to.tanh)
    behav_policy = FNNPolicy(spec=env_sim.spec, **behav_policy_hparam)
    vfcn_hparam = dict(hidden_sizes=[32, 32], hidden_nonlin=to.relu)
    vfcn = FNNPolicy(spec=EnvSpec(env_sim.obs_space, ValueFunctionSpace),
                     **vfcn_hparam)
    critic_hparam = dict(
        gamma=0.9844224855479998,
        lamda=0.9700148505302241,
        num_epoch=5,
        batch_size=500,
        standardize_adv=False,
        lr=7.058326426522811e-4,
        max_grad_norm=6.0,
Exemplo n.º 7
0
def test_simopt_cem_ppo(ex_dir, env: SimEnv):
    pyrado.set_seed(0)

    # Environments
    env_real = deepcopy(env)
    env_real = ActNormWrapper(env_real)
    env_sim = ActNormWrapper(env)
    randomizer = DomainRandomizer(
        NormalDomainParam(name="mass_rot_pole",
                          mean=0.0,
                          std=1e6,
                          clip_lo=1e-3),
        NormalDomainParam(name="mass_pend_pole",
                          mean=0.0,
                          std=1e6,
                          clip_lo=1e-3),
        NormalDomainParam(name="length_rot_pole",
                          mean=0.0,
                          std=1e6,
                          clip_lo=1e-3),
        NormalDomainParam(name="length_pend_pole",
                          mean=0.0,
                          std=1e6,
                          clip_lo=1e-3),
    )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {
        0: ("mass_rot_pole", "mean"),
        1: ("mass_rot_pole", "std"),
        2: ("mass_pend_pole", "mean"),
        3: ("mass_pend_pole", "std"),
        4: ("length_rot_pole", "mean"),
        5: ("length_rot_pole", "std"),
        6: ("length_pend_pole", "mean"),
        7: ("length_pend_pole", "std"),
    }
    trafo_mask = [True] * 8
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    # Subroutine for policy improvement
    behav_policy_hparam = dict(hidden_sizes=[16, 16], hidden_nonlin=to.tanh)
    behav_policy = FNNPolicy(spec=env_sim.spec, **behav_policy_hparam)
    vfcn_hparam = dict(hidden_sizes=[16, 16], hidden_nonlin=to.relu)
    vfcn = FNNPolicy(spec=EnvSpec(env_sim.obs_space, ValueFunctionSpace),
                     **vfcn_hparam)
    critic_hparam = dict(
        gamma=0.99,
        lamda=0.98,
        num_epoch=2,
        batch_size=128,
        standardize_adv=True,
        lr=8e-4,
        max_grad_norm=5.0,
    )
    critic = GAE(vfcn, **critic_hparam)
    subrtn_policy_hparam = dict(
        max_iter=2,
        eps_clip=0.13,
        min_steps=4 * env_sim.max_steps,
        num_epoch=3,
        batch_size=128,
        std_init=0.75,
        lr=3e-04,
        max_grad_norm=1.0,
        num_workers=1,
    )
    subrtn_policy = PPO(ex_dir, env_sim, behav_policy, critic,
                        **subrtn_policy_hparam)

    prior = DomainRandomizer(
        NormalDomainParam(name="mass_rot_pole", mean=0.095, std=0.095 / 10),
        NormalDomainParam(name="mass_pend_pole", mean=0.024, std=0.024 / 10),
        NormalDomainParam(name="length_rot_pole", mean=0.085, std=0.085 / 10),
        NormalDomainParam(name="length_pend_pole", mean=0.129, std=0.129 / 10),
    )
    ddp_policy_hparam = dict(mapping=dp_map,
                             trafo_mask=trafo_mask,
                             scale_params=True)
    ddp_policy = DomainDistrParamPolicy(prior=prior, **ddp_policy_hparam)
    subsubrtn_distr_hparam = dict(
        max_iter=2,
        pop_size=10,
        num_init_states_per_domain=1,
        num_is_samples=8,
        expl_std_init=1e-2,
        expl_std_min=1e-5,
        extra_expl_std_init=1e-2,
        extra_expl_decay_iter=5,
        num_workers=1,
    )
    subsubrtn_distr = CEM(ex_dir, env_sim, ddp_policy,
                          **subsubrtn_distr_hparam)
    subrtn_distr_hparam = dict(
        metric=None,
        obs_dim_weight=[1, 1, 1, 1, 10, 10],
        num_rollouts_per_distr=3,
        num_workers=1,
    )
    subrtn_distr = SysIdViaEpisodicRL(subsubrtn_distr,
                                      behavior_policy=behav_policy,
                                      **subrtn_distr_hparam)

    # Algorithm
    algo_hparam = dict(
        max_iter=1,
        num_eval_rollouts=5,
        warmstart=True,
    )
    algo = SimOpt(ex_dir, env_sim, env_real, subrtn_policy, subrtn_distr,
                  **algo_hparam)
    algo.train()

    assert algo.curr_iter == algo.max_iter
Exemplo n.º 8
0
def test_sysidasrl_reps(ex_dir, env: SimEnv, num_eval_rollouts: int):
    pyrado.set_seed(0)

    def eval_ddp_policy(rollouts_real):
        init_states_real = np.array([ro.states[0, :] for ro in rollouts_real])
        rollouts_sim = []
        for i, _ in enumerate(range(num_eval_rollouts)):
            rollouts_sim.append(
                rollout(env_sim,
                        behavior_policy,
                        eval=True,
                        reset_kwargs=dict(init_state=init_states_real[i, :])))

        # Clip the rollouts rollouts yielding two lists of pairwise equally long rollouts
        ros_real_tr, ros_sim_tr = algo.truncate_rollouts(rollouts_real,
                                                         rollouts_sim,
                                                         replicate=False)
        assert len(ros_real_tr) == len(ros_sim_tr)
        assert all([
            np.allclose(r.states[0, :], s.states[0, :])
            for r, s in zip(ros_real_tr, ros_sim_tr)
        ])

        # Return the average the loss
        losses = [
            algo.loss_fcn(ro_r, ro_s)
            for ro_r, ro_s in zip(ros_real_tr, ros_sim_tr)
        ]
        return float(np.mean(np.asarray(losses)))

    # Environments
    env_real = deepcopy(env)
    env_real.domain_param = dict(ang_offset=-2 * np.pi / 180)

    env_sim = deepcopy(env)
    randomizer = DomainRandomizer(
        UniformDomainParam(name="ang_offset", mean=0, halfspan=1e-6), )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {0: ("ang_offset", "mean"), 1: ("ang_offset", "halfspan")}
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    assert env_real is not env_sim

    # Policies (the behavioral policy needs to be deterministic)
    behavior_policy = LinearPolicy(env_sim.spec,
                                   feats=FeatureStack(identity_feat))
    prior = DomainRandomizer(
        UniformDomainParam(name="ang_offset",
                           mean=1 * np.pi / 180,
                           halfspan=1 * np.pi / 180), )
    ddp_policy = DomainDistrParamPolicy(mapping=dp_map,
                                        trafo_mask=[False, True],
                                        prior=prior)

    # Subroutine
    subrtn_hparam = dict(
        max_iter=2,
        eps=1.0,
        pop_size=100,
        num_init_states_per_domain=1,
        expl_std_init=5e-2,
        expl_std_min=1e-4,
        num_workers=1,
    )
    subrtn = REPS(ex_dir, env_sim, ddp_policy, **subrtn_hparam)

    algo_hparam = dict(metric=None,
                       obs_dim_weight=np.ones(env_sim.obs_space.shape),
                       num_rollouts_per_distr=5,
                       num_workers=1)
    algo = SysIdViaEpisodicRL(subrtn, behavior_policy, **algo_hparam)

    rollouts_real_tst = []
    for _ in range(num_eval_rollouts):
        rollouts_real_tst.append(rollout(env_real, behavior_policy, eval=True))
    loss_pre = eval_ddp_policy(rollouts_real_tst)

    # Mimic training
    while algo.curr_iter < algo.max_iter and not algo.stopping_criterion_met():
        algo.logger.add_value(algo.iteration_key, algo.curr_iter)

        # Creat fake real-world data
        rollouts_real = []
        for _ in range(num_eval_rollouts):
            rollouts_real.append(rollout(env_real, behavior_policy, eval=True))

        algo.step(snapshot_mode="latest",
                  meta_info=dict(rollouts_real=rollouts_real))

        algo.logger.record_step()
        algo._curr_iter += 1

    loss_post = eval_ddp_policy(rollouts_real_tst)
    assert loss_post <= loss_pre  # don't have to be better every step
def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int):
    """
    Objective function for the Optuna `Study` to maximize.
    
    .. note::
        Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments.

    :param trial: Optuna Trial object for hyper-parameter optimization
    :param study_dir: the parent directory for all trials in this study
    :param seed: seed value for the random number generators, pass `None` for no seeding
    :return: objective function value
    """
    # Synchronize seeds between Optuna trials
    pyrado.set_seed(seed)

    # Environments
    env_hparams = dict(dt=1 / 100., max_steps=600)
    env_real = QQubeSwingUpSim(**env_hparams)
    env_real.domain_param = dict(
        Mr=0.095 * 0.9,  # 0.095*0.9 = 0.0855
        Mp=0.024 * 1.1,  # 0.024*1.1 = 0.0264
        Lr=0.085 * 0.9,  # 0.085*0.9 = 0.0765
        Lp=0.129 * 1.1,  # 0.129*1.1 = 0.1419
    )

    env_sim = QQubeSwingUpSim(**env_hparams)
    randomizer = DomainRandomizer(
        NormalDomainParam(name='Mr', mean=0., std=1e6, clip_lo=1e-3),
        NormalDomainParam(name='Mp', mean=0., std=1e6, clip_lo=1e-3),
        NormalDomainParam(name='Lr', mean=0., std=1e6, clip_lo=1e-3),
        NormalDomainParam(name='Lp', mean=0., std=1e6, clip_lo=1e-3),
    )
    env_sim = DomainRandWrapperLive(env_sim, randomizer)
    dp_map = {
        0: ('Mr', 'mean'),
        1: ('Mr', 'std'),
        2: ('Mp', 'mean'),
        3: ('Mp', 'std'),
        4: ('Lr', 'mean'),
        5: ('Lr', 'std'),
        6: ('Lp', 'mean'),
        7: ('Lp', 'std')
    }
    trafo_mask = [True] * 8
    env_sim = MetaDomainRandWrapper(env_sim, dp_map)

    # Subroutine for policy improvement
    behav_policy_hparam = dict(hidden_sizes=[64, 64], hidden_nonlin=to.tanh)
    behav_policy = FNNPolicy(spec=env_sim.spec, **behav_policy_hparam)
    vfcn_hparam = dict(hidden_sizes=[64, 64], hidden_nonlin=to.tanh)
    vfcn = FNNPolicy(spec=EnvSpec(env_sim.obs_space, ValueFunctionSpace),
                     **vfcn_hparam)
    critic_hparam = dict(
        gamma=0.9885,
        lamda=0.9648,
        num_epoch=2,
        batch_size=500,
        standardize_adv=False,
        lr=5.792e-4,
        max_grad_norm=1.,
    )
    critic = GAE(vfcn, **critic_hparam)
    subrtn_policy_hparam = dict(
        max_iter=200,
        min_steps=3 * 23 * env_sim.max_steps,
        num_epoch=7,
        eps_clip=0.0744,
        batch_size=500,
        std_init=0.9074,
        lr=3.446e-04,
        max_grad_norm=1.,
        num_workers=1,
    )
    subrtn_policy = PPO(study_dir, env_sim, behav_policy, critic,
                        **subrtn_policy_hparam)

    # Subroutine for system identification
    prior_std_denom = trial.suggest_uniform('prior_std_denom', 5, 20)
    prior = DomainRandomizer(
        NormalDomainParam(name='Mr', mean=0.095, std=0.095 / prior_std_denom),
        NormalDomainParam(name='Mp', mean=0.024, std=0.024 / prior_std_denom),
        NormalDomainParam(name='Lr', mean=0.085, std=0.085 / prior_std_denom),
        NormalDomainParam(name='Lp', mean=0.129, std=0.129 / prior_std_denom),
    )
    ddp_policy = DomainDistrParamPolicy(
        mapping=dp_map,
        trafo_mask=trafo_mask,
        prior=prior,
        scale_params=trial.suggest_categorical('ddp_policy_scale_params',
                                               [True, False]),
    )
    subsubrtn_distr_hparam = dict(
        max_iter=trial.suggest_categorical('subsubrtn_distr_max_iter', [20]),
        pop_size=trial.suggest_int('pop_size', 50, 500),
        num_rollouts=1,
        num_is_samples=trial.suggest_int('num_is_samples', 5, 20),
        expl_std_init=trial.suggest_loguniform('expl_std_init', 1e-3, 1e-1),
        expl_std_min=trial.suggest_categorical('expl_std_min', [1e-4]),
        extra_expl_std_init=trial.suggest_loguniform('expl_std_init', 1e-3,
                                                     1e-1),
        extra_expl_decay_iter=trial.suggest_int('extra_expl_decay_iter', 0,
                                                10),
        num_workers=1,
    )
    csv_logger = create_csv_step_logger(
        osp.join(study_dir, f'trial_{trial.number}'))
    subsubrtn_distr = CEM(study_dir,
                          env_sim,
                          ddp_policy,
                          **subsubrtn_distr_hparam,
                          logger=csv_logger)
    obs_vel_weight = trial.suggest_loguniform('obs_vel_weight', 1, 100)
    subrtn_distr_hparam = dict(
        metric=None,
        obs_dim_weight=[1, 1, 1, 1, obs_vel_weight, obs_vel_weight],
        num_rollouts_per_distr=trial.suggest_int('num_rollouts_per_distr', 20,
                                                 100),
        num_workers=1,
    )
    subrtn_distr = SysIdViaEpisodicRL(subsubrtn_distr, behav_policy,
                                      **subrtn_distr_hparam)

    # Algorithm
    algo_hparam = dict(
        max_iter=trial.suggest_categorical('algo_max_iter', [10]),
        num_eval_rollouts=trial.suggest_categorical('algo_num_eval_rollouts',
                                                    [5]),
        warmstart=trial.suggest_categorical('algo_warmstart', [True]),
        thold_succ_subrtn=trial.suggest_categorical('algo_thold_succ_subrtn',
                                                    [50]),
        subrtn_snapshot_mode='latest',
    )
    algo = SimOpt(study_dir,
                  env_sim,
                  env_real,
                  subrtn_policy,
                  subrtn_distr,
                  **algo_hparam,
                  logger=csv_logger)

    # Jeeeha
    algo.train(seed=args.seed)

    # Evaluate
    min_rollouts = 1000
    sampler = ParallelRolloutSampler(
        env_real, algo.policy, num_workers=1,
        min_rollouts=min_rollouts)  # parallelize via optuna n_jobs
    ros = sampler.sample()
    mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts

    return mean_ret