Exemplo n.º 1
0
    def run(self, *args, **kwargs):
        meta = pyrat.data.getAnnotation(layer=self.layer)
        li = pyrat.query(layer=self.layer)
        odim = li.shape
        nry = odim[-2]

        odim[-2] //= self.suby
        odim[-1] //= self.subx

        outlayer = pyrat.data.addLayer(dtype=li.dtype, shape=odim)
        blockdim = odim.copy()
        blockdim[-2] = 1

        P = pyrat.tools.ProgressBar('  ' + self.name, odim[-2])
        P.update(0)
        for k in range(odim[-2]):
            arr = pyrat.getdata(block=(k * self.suby, (k + 1) * self.suby, 0,
                                       odim[-1] * self.subx),
                                layer=self.layer)
            if self.decimate is True:
                arr = arr[..., ::self.suby, ::self.subx]
            else:
                arr = rebin(arr, tuple(blockdim))
            pyrat.data.setData(arr, block=(k, k + 1, 0, 0), layer=outlayer)
        P.update(k + 1)
        del P

        pyrat.activate(outlayer)

        if "geo_ps_east" in meta and "geo_ps_north" in meta:
            meta['geo_ps_east'] = meta["geo_ps_east"] * self.subx
            meta['geo_ps_north'] = meta["geo_ps_north"] * self.suby
        pyrat.data.setAnnotation(meta, layer=outlayer)
        return outlayer
Exemplo n.º 2
0
    def run(self, *args, **kwargs):
        layer = pyrat.data.active

        # STEP1: Estimate spectrum
        self.vblock = False
        rgspec = self.layer_accumulate(self.estimate_spectrum, axis='range', combine=self.combine_spectrum,
                                       silent=False)
        self.vblock = True
        azspec = self.layer_accumulate(self.estimate_spectrum, axis='azimuth', combine=self.combine_spectrum,
                                       silent=False)

        # STEP2: Adjust spectra
        rgcorr, rgcent = self.spec_correction(rgspec, alpha=self.alpha, fix=self.fix, cutoff=self.cutoff,
                                              func=(self.func, self.alpha))
        azcorr, azcent = self.spec_correction(azspec, alpha=self.alpha, fix=self.fix, cutoff=self.cutoff,
                                              func=(self.func, self.alpha))

        if self.center is False:
            azcent, rgcent = None, None

        # STEP3: Weight / Unweight
        if self.axis == 'range' or self.axis == 'both':
            self.vblock = False
            outlayer1 = self.layer_process(self.unweight_spectrum, axis='range', correction=(azcorr, rgcorr),
                                           center=(azcent, rgcent), silent=False)
        if self.axis == 'azimuth' or self.axis == 'both':
            self.vblock = True
            outlayer2 = self.layer_process(self.unweight_spectrum, axis='azimuth', correction=(azcorr, rgcorr),
                                           center=(azcent, rgcent),
                                           layer=outlayer1, silent=False)

        pyrat.delete(outlayer1)
        pyrat.activate(outlayer2)
        return outlayer2
Exemplo n.º 3
0
    def run(self, *args, **kwargs):
        layer = pyrat.data.active

        # STEP1: Estimate profiles
        azprof, rgprof = self.layer_accumulate(self.estimate_profiles, combine=self.combine_profiles)

        # STEP2: Fit correction
        rgprof /= np.mean(rgprof, axis=-1, keepdims=True)
        azprof /= np.mean(azprof, axis=-1, keepdims=True)

        # todo: from here on adapt to nd-data sets
        rgaxis = np.arange(rgprof.shape[-1])
        azaxis = np.arange(azprof.shape[-1])
        rgcorr = np.empty_like(rgprof)
        azcorr = np.empty_like(azprof)
        if rgprof.ndim == 1:
            rgcorr = np.polyval(np.polyfit(rgaxis, rgprof, self.order), rgaxis)
            azcorr = np.polyval(np.polyfit(azaxis, azprof, self.order), azaxis)
        elif rgprof.ndim == 2:
            for k in range(rgprof.shape[0]):
                rgcorr[k, :] = np.polyval(np.polyfit(rgaxis, rgprof[k, :], self.order), rgaxis)
                azcorr[k, :] = np.polyval(np.polyfit(azaxis, azprof[k, :], self.order), azaxis)
        elif rgprof.ndim == 3:
            for k in range(rgprof.shape[0]):
                for l in range(rgprof.shape[1]):
                    rgcorr[k, l, :] = np.polyval(np.polyfit(rgaxis, rgprof[k, l, :], self.order), rgaxis)
                    azcorr[k, l, :] = np.polyval(np.polyfit(azaxis, azprof[k, l, :], self.order), azaxis)

        # STEP3: Apply correction
        outlayer = self.layer_process(self.applyfix, axis=self.axis, correction=(azcorr, rgcorr), siltent=False,
                                      **kwargs)
        pyrat.activate(outlayer)
        return outlayer
Exemplo n.º 4
0
    def run(self, *args, **kwargs):
        meta = pyrat.data.getAnnotation(layer=self.layer)
        li = pyrat.query(layer=self.layer)
        odim = li.shape
        nry = odim[-2]
        odim[-2] //= self.suby
        odim[-1] //= self.subx
        outlayer = pyrat.data.addLayer(dtype=li.dtype, shape=odim)
        blockdim = odim.copy()
        blockdim[-2] = 1
        P = pyrat.tools.ProgressBar('  ' + self.name, odim[-2])
        P.update(0)
        for k in range(odim[-2]):
            arr = pyrat.getdata(block=(k*self.suby, (k+1)*self.suby, 0, odim[-1] * self.subx), layer=self.layer)
            arr = rebin(arr, tuple(blockdim))
            pyrat.data.setData(arr, block=(k, k+1, 0, 0), layer=outlayer)
            P.update(k + 1)
        del P
        pyrat.activate(outlayer)

        if "geo_ps_east" in meta and "geo_ps_north" in meta:
            meta['geo_ps_east'] = meta["geo_ps_east"] * self.subx
            meta['geo_ps_north'] = meta["geo_ps_north"] * self.suby
        pyrat.data.setAnnotation(meta, layer=outlayer)
        return outlayer
Exemplo n.º 5
0
        def run(self, *args, **kwargs):
            P = ProgressBar('  ' + self.name, 10)
            bounds = opt.fmin(self.optf, [0.5, 2.0],
                              args=(self.looks, self.sigma),
                              disp=False)  # calc sigma bounds
            newsig = self.newsig(bounds[0],
                                 bounds[1],
                                 sigrng=self.sigma,
                                 looks=self.looks)  # calc new stddev
            P.update(0)
            perc = 100.0 - self.perc * 100.0  # point target theshold
            pthreshold = np.mean(
                self.layer_accumulate(self.estimate_percentile,
                                      type=self.type,
                                      perc=perc))
            P.update(2)

            layer = self.layer_process(self.leeimproved,
                                       bounds=bounds,
                                       newsig=newsig,
                                       thres=pthreshold,
                                       looks=self.looks,
                                       win=self.win,
                                       type=self.type)
            P.update(10)
            del P
            pyrat.activate(layer)
            return layer
Exemplo n.º 6
0
    def run(self, *args, **kwargs):
        para = [foo['var'] for foo in self.para]
        self.checkpara(kwargs, para)
        logging.info(
            self.name + '  ' + str(dict((k, v) for k, v in self.__dict__.items() if k in para or k in kwargs)))

        tmp_filename = tempfile.mktemp(suffix='.hd5', prefix='pyrat_', dir=pyrat.data.tmpdir)
        shutil.copyfile(self.file, tmp_filename)
        lay = pyrat.data.addLayer(file=tmp_filename)
        pyrat.activate(lay)
Exemplo n.º 7
0
    def run(self, *args, **kwargs):
        lay0 = pyrat.data.active

        # STEP1: Estimate spectra
        lay1 = pyrat.filter.unweight(layer=lay0, center=True, fix=True, cutoff=self.cutoff)
        lay2 = pyrat.filter.weight(layer=lay0, center=False, fix=False, func='Hamming', alpha=0.5, cutoff=self.cutoff)
        lay3 = self.layer_process(self.cda, layer=[lay1, lay2])

        pyrat.delete(lay1)
        pyrat.delete(lay2)
        pyrat.activate(lay3)
Exemplo n.º 8
0
    def run(self, *args, **kwargs):
        para = [foo['var'] for foo in self.para]
        self.checkpara(kwargs, para)
        logging.info(self.name + '  ' + str(
            dict((k, v) for k, v in self.__dict__.items()
                 if k in para or k in kwargs)))

        tmp_filename = tempfile.mktemp(suffix='.hd5',
                                       prefix='pyrat_',
                                       dir=pyrat.data.tmpdir)
        shutil.copyfile(self.file, tmp_filename)
        lay = pyrat.data.addLayer(file=tmp_filename)
        pyrat.activate(lay)
Exemplo n.º 9
0
    def run(self, *args, **kwargs):
        layer = pyrat.data.active

        # STEP1: Estimate profiles
        azprof, rgprof = self.layer_accumulate(self.estimate_profiles,
                                               combine=self.combine_profiles)

        # STEP2: Fit correction
        rgprof /= np.mean(rgprof, axis=-1, keepdims=True)
        azprof /= np.mean(azprof, axis=-1, keepdims=True)

        # todo: from here on adapt to nd-data sets
        rgaxis = np.arange(rgprof.shape[-1])
        azaxis = np.arange(azprof.shape[-1])
        rgcorr = np.empty_like(rgprof)
        azcorr = np.empty_like(azprof)
        if rgprof.ndim == 1:
            rgcorr = np.polyval(np.polyfit(rgaxis, rgprof, self.order), rgaxis)
            azcorr = np.polyval(np.polyfit(azaxis, azprof, self.order), azaxis)
        elif rgprof.ndim == 2:
            for k in range(rgprof.shape[0]):
                rgcorr[k, :] = np.polyval(
                    np.polyfit(rgaxis, rgprof[k, :], self.order), rgaxis)
                azcorr[k, :] = np.polyval(
                    np.polyfit(azaxis, azprof[k, :], self.order), azaxis)
        elif rgprof.ndim == 3:
            for k in range(rgprof.shape[0]):
                for l in range(rgprof.shape[1]):
                    rgcorr[k, l, :] = np.polyval(
                        np.polyfit(rgaxis, rgprof[k, l, :], self.order),
                        rgaxis)
                    azcorr[k, l, :] = np.polyval(
                        np.polyfit(azaxis, azprof[k, l, :], self.order),
                        azaxis)

        # STEP3: Apply correction
        outlayer = self.layer_process(self.applyfix,
                                      axis=self.axis,
                                      correction=(azcorr, rgcorr),
                                      siltent=False,
                                      **kwargs)
        pyrat.activate(outlayer)
        return outlayer
Exemplo n.º 10
0
 def run(self, *args, **kwargs):
     P = ProgressBar('  ' + self.name, self.iter)
     P.update(0)
     for k in range(self.iter):
         if k != 0:
             oldlayer = newlayer
         newlayer = self.layer_process(self.srad,
                                       looks=self.looks,
                                       step=self.step,
                                       iter=k,
                                       scale=self.scale,
                                       type=self.type)
         if k != 0:
             pyrat.delete(oldlayer, silent=True)
         pyrat.activate(newlayer, silent=True)
         P.update(k + 1)
     del P
     pyrat.activate(newlayer)
     return newlayer
Exemplo n.º 11
0
    def run(self, *args, **kwargs):

        li = pyrat.query(layer=self.layer)
        odim = li.shape
        nry = odim[-2]
        odim[-2] //= self.suby
        odim[-1] //= self.subx
        outlayer = pyrat.data.addLayer(dtype=li.dtype, shape=odim)
        blockdim = odim.copy()
        blockdim[-2] = 1
        P = ProgressBar('  ' + self.name, odim[-2])
        P.update(0)
        for k in range(odim[-2]):
            arr = pyrat.getdata(block=(k*self.suby, (k+1)*self.suby, 0, odim[-1] * self.subx), layer=self.layer)
            arr = rebin(arr, tuple(blockdim))
            pyrat.data.setData(arr, block=(k, k+1, 0, 0), layer=outlayer)
            P.update(k + 1)
        del P
        pyrat.activate(outlayer)
        return outlayer
Exemplo n.º 12
0
    def run(self, *args, **kwargs):
        l_cov = pyrat.data.active
        outsize = pyrat.data.shape[-2:]

        # STEP0: Random initialisation
        l_init = self.layer_fromfunc(self.init_random, size=outsize, nclass=self.nclass)
        P = ProgressBar('  ' + self.name, self.niter)
        P.update(0)
        for iter in range(self.niter):
            # STEP1: Calculate cluster centres (and their frequency)
            pyrat.activate([l_cov, l_init], silent=True)
            cc, nc = self.layer_accumulate(self.calc_centers, nclass=self.nclass, combine=self.combine_mean)
            pyrat.delete(l_init, silent=True)

            # STEP2: Eliminate empty classes
            for k, n in enumerate(nc):
                if n == 0:
                    del cc[k]
                    del nc[k]

            # STEP3: Calculate class memberships
            pyrat.activate(l_cov, silent=True)
            l_init = self.layer_process(self.assign_classes, centers=cc)
            P.update(iter+1)
        del P
        pyrat.activate(l_init)
        return l_init
Exemplo n.º 13
0
    def run(self, *args, **kwargs):
        l_cov = pyrat.data.active
        outsize = pyrat.data.shape[-2:]

        # STEP0: Random initialisation
        l_init = self.layer_fromfunc(self.init_random, size=outsize, nclass=self.nclass)
        P = ProgressBar('  ' + self.name, self.niter)
        P.update(0)
        for iter in range(self.niter):
            # STEP1: Calculate cluster centres (and their frequency)
            pyrat.activate([l_cov, l_init], silent=True)
            cc, nc = self.layer_accumulate(self.calc_centers, nclass=self.nclass, combine=self.combine_mean)
            pyrat.delete(l_init, silent=True)

            # STEP2: Eliminate empty classes
            for k, n in enumerate(nc):
                if n == 0:
                    del cc[k]
                    del nc[k]

            # STEP3: Calculate class memberships
            pyrat.activate(l_cov, silent=True)
            l_init = self.layer_process(self.assign_classes, centers=cc)
            P.update(iter + 1)
        del P
        pyrat.activate(l_init)
        return l_init
Exemplo n.º 14
0
    def run(self, *args, **kwargs):

        if isinstance(self.layer, list):  # Means the init layer is also active
            l_cov = self.layer[0]
            l_init = self.layer[1]
        else:
            l_cov = self.layer
            l_init = []
            outsize = pyrat.data.shape[-2:]

        meta = pyrat.getmeta(layer=l_cov)

        # STEP0: Do random initialisation if l_init is empty
        if len(l_init) == 0:
            l_init = self.layer_fromfunc(self.init_random,
                                         size=outsize,
                                         nclass=self.nclass)

        P = pyrat.tools.ProgressBar('  ' + self.name, self.niter)
        P.update(0)
        for iter in range(self.niter):
            # STEP1: Calculate cluster centres (and their frequency)
            pyrat.activate([l_cov, l_init], silent=True)
            cc, nc = self.layer_accumulate(self.calc_centers,
                                           nclass=self.nclass,
                                           combine=self.combine_mean)
            pyrat.delete(l_init, silent=True)

            # STEP2: Eliminate empty classes
            cc = [cc[k] for k, n in enumerate(nc) if n != 0]
            nc = [nc[k] for k, n in enumerate(nc) if n != 0]

            # STEP3: Calculate class memberships
            pyrat.activate(l_cov, silent=True)
            l_init = self.layer_process(self.assign_classes, centers=cc)
            P.update(iter + 1)
        del P
        meta['Class Centers'] = cc
        pyrat.setmeta(meta, layer=l_init)
        pyrat.activate(l_init)
        return l_init