Exemplo n.º 1
0
def _tlpfilter(nanmat, rows, cols, cutoff, span, threshold, tsincr, func):
    """
    Wrapper function for temporal low pass filter
    """
    tsfilt_incr_each_row = {}
    process_rows = mpiops.array_split(list(range(rows)))

    for r in process_rows:
        tsfilt_incr_each_row[r] = np.empty(tsincr.shape[1:],
                                           dtype=np.float32) * np.nan
        for j in range(cols):
            sel = np.nonzero(nanmat[r, j, :])[0]  # don't select if nan
            m = len(sel)
            if m >= threshold:
                for k in range(m):
                    yr = span[sel] - span[sel[k]]
                    wgt = func(m, yr, cutoff)
                    wgt /= np.sum(wgt)
                    tsfilt_incr_each_row[r][j, sel[k]] = np.sum(
                        tsincr[r, j, sel] * wgt)

    tsfilt_incr_combined = shared.join_dicts(
        mpiops.comm.allgather(tsfilt_incr_each_row))
    tsfilt_incr = np.array([v[1] for v in tsfilt_incr_combined.items()])
    return tsfilt_incr
Exemplo n.º 2
0
def maxvar_vcm_calc_wrapper(params):
    """
    MPI wrapper for maxvar and vcmt computation
    """
    preread_ifgs = params[cf.PREREAD_IFGS]
    ifg_paths = [ifg_path.tmp_sampled_path for ifg_path in params[cf.INTERFEROGRAM_FILES]]
    log.info('Calculating the temporal variance-covariance matrix')

    def _get_r_dist(ifg_path):
        """
        Get RDIst class object
        """
        ifg = Ifg(ifg_path)
        ifg.open()
        r_dist = RDist(ifg)()
        ifg.close()
        return r_dist

    r_dist = mpiops.run_once(_get_r_dist, ifg_paths[0])
    prcs_ifgs = mpiops.array_split(list(enumerate(ifg_paths)))
    process_maxvar = {}
    for n, i in prcs_ifgs:
        log.debug(f'Calculating maxvar for {n} of process ifgs {len(prcs_ifgs)} of total {len(ifg_paths)}')
        process_maxvar[int(n)] = cvd(i, params, r_dist, calc_alpha=True, write_vals=True, save_acg=True)[0]
    maxvar_d = shared.join_dicts(mpiops.comm.allgather(process_maxvar))
    maxvar = [v[1] for v in sorted(maxvar_d.items(), key=lambda s: s[0])]

    vcmt = mpiops.run_once(get_vcmt, preread_ifgs, maxvar)
    log.debug("Finished maxvar and vcm calc!")
    params[cf.MAXVAR], params[cf.VCMT] = maxvar, vcmt
    np.save(Configuration.vcmt_path(params), arr=vcmt)
    return maxvar, vcmt
Exemplo n.º 3
0
def spatial_low_pass_filter(ts_lp, ifg, params):
    """
    Filter time series data spatially using either a Butterworth or Gaussian
    low pass filter defined by a cut-off distance. If the cut-off distance is
    defined as zero in the parameters dictionary then it is calculated for
    each time step using the pyrate.covariance.cvd_from_phase method.

    :param ndarray ts_lp: Array of time series data, the result of a temporal
                low pass filter operation. shape (ifg.shape, n_epochs)
    :param shared.Ifg instance ifg: interferogram object
    :param dict params: Dictionary of configuration parameters

    :return: ts_hp: filtered time series data of shape (ifg.shape, n_epochs)
    :rtype: ndarray
    """
    log.info('Applying spatial low-pass filter')
    if params[cf.SLPF_NANFILL] == 0:
        ts_lp[np.isnan(ts_lp)] = 0  # need it here for cvd and fft
    else:
        # optionally interpolate, operation is inplace
        _interpolate_nans(ts_lp, params[cf.SLPF_NANFILL_METHOD])
    r_dist = RDist(ifg)()
    nvels = ts_lp.shape[2]

    process_nvel = mpiops.array_split(range(nvels))
    process_ts_lp = {}

    for i in process_nvel:
        process_ts_lp[i] = _slpfilter(ts_lp[:, :, i], ifg, r_dist, params)

    ts_lp_d = shared.join_dicts(mpiops.comm.allgather(process_ts_lp))
    ts_lp = np.dstack([v[1] for v in sorted(ts_lp_d.items())])
    log.debug('Finished applying spatial low pass filter')
    return ts_lp
Exemplo n.º 4
0
def spatial_low_pass_filter(ts_hp: np.ndarray, ifg: Ifg,
                            params: dict) -> np.ndarray:
    """
    Filter time series data spatially using a Gaussian low-pass
    filter defined by a cut-off distance. If the cut-off distance is
    defined as zero in the parameters dictionary then it is calculated for
    each time step using the pyrate.covariance.cvd_from_phase method.
    :param ts_hp: Array of temporal high-pass time series data, shape (ifg.shape, n_epochs)
    :param ifg: pyrate.core.shared.Ifg Class object.
    :param params: Dictionary of PyRate configuration parameters.
    :return: ts_lp: Low-pass filtered time series data of shape (ifg.shape, n_epochs).
    """
    log.info('Applying spatial low-pass filter')

    nvels = ts_hp.shape[2]
    cutoff = params[C.SLPF_CUTOFF]
    # nanfill = params[cf.SLPF_NANFILL]
    # fillmethod = params[cf.SLPF_NANFILL_METHOD]
    if cutoff == 0:
        r_dist = RDist(ifg)()  # only needed for cvd_for_phase
    else:
        r_dist = None
        log.info(f'Gaussian spatial filter cutoff is {cutoff:.3f} km for all '
                 f'{nvels} time-series images')

    process_nvel = mpiops.array_split(range(nvels))
    process_ts_lp = {}

    for i in process_nvel:
        process_ts_lp[i] = _slpfilter(ts_hp[:, :, i], ifg, r_dist, params)

    ts_lp_d = shared.join_dicts(mpiops.comm.allgather(process_ts_lp))
    ts_lp = np.dstack([v[1] for v in sorted(ts_lp_d.items())])
    log.debug('Finished applying spatial low pass filter')
    return ts_lp
Exemplo n.º 5
0
def _assemble_tsincr(ifg_paths, params, preread_ifgs, tiles, nvels):
    """
    Helper function to reconstruct time series images from tiles
    """
    # pre-allocate dest 3D array
    shape = preread_ifgs[ifg_paths[0]].shape
    tsincr_p = {}
    process_nvels = mpiops.array_split(range(nvels))
    for i in process_nvels:
        tsincr_p[i] = assemble_tiles(shape,
                                     params[cf.TMPDIR],
                                     tiles,
                                     out_type='tsincr_aps',
                                     index=i)
    tsincr_g = shared.join_dicts(mpiops.comm.allgather(tsincr_p))
    return np.dstack([v[1] for v in sorted(tsincr_g.items())])
Exemplo n.º 6
0
def temporal_high_pass_filter(tsincr: np.ndarray, epochlist: EpochList,
                              params: dict) -> np.ndarray:
    """
    Isolate high-frequency components of time series data by subtracting
    low-pass components obtained using a Gaussian filter defined by a
    cut-off time period (in days).
    :param tsincr: Array of incremental time series data of shape (ifg.shape, n_epochs).
    :param epochlist: A pyrate.core.shared.EpochList Class instance.
    :param params: Dictionary of PyRate configuration parameters.
    :return: ts_hp: Filtered high frequency time series data; shape (ifg.shape, nepochs).
    """
    log.info('Applying temporal high-pass filter')
    threshold = params[C.TLPF_PTHR]
    cutoff_day = params[C.TLPF_CUTOFF]
    if cutoff_day < 1 or type(cutoff_day) != int:
        raise ValueError(f'tlpf_cutoff must be an integer greater than or '
                         f'equal to 1 day. Value provided = {cutoff_day}')

    # convert cutoff in days to years
    cutoff_yr = cutoff_day / ifc.DAYS_PER_YEAR
    log.info(f'Gaussian temporal filter cutoff is {cutoff_day} days '
             f'({cutoff_yr:.4f} years)')

    intv = np.diff(epochlist.spans)  # time interval for the neighboring epochs
    span = epochlist.spans[:tsincr.shape[2]] + intv / 2  # accumulated time
    rows, cols = tsincr.shape[:2]

    tsfilt_row = {}
    process_rows = mpiops.array_split(list(range(rows)))

    for r in process_rows:
        tsfilt_row[r] = np.empty(tsincr.shape[1:], dtype=np.float32) * np.nan
        for j in range(cols):
            # Result of gaussian filter is low frequency time series
            tsfilt_row[r][j, :] = gaussian_temporal_filter(
                tsincr[r, j, :], cutoff_yr, span, threshold)

    tsfilt_combined = shared.join_dicts(mpiops.comm.allgather(tsfilt_row))
    tsfilt = np.array([v[1] for v in tsfilt_combined.items()])
    log.debug("Finished applying temporal high-pass filter")
    # Return the high-pass time series by subtracting low-pass result from input
    return tsincr - tsfilt
Exemplo n.º 7
0
def __create_ifg_edge_dict(ifg_files: List[str], params: dict) -> Dict[Edge, IndexedIfg]:
    """Returns a dictionary of indexed ifg 'edges'"""
    ifg_files.sort()
    ifgs = [Ifg(i) for i in ifg_files]

    def _func(ifg, index):
        ifg.open()
        ifg.nodata_value = params[C.NO_DATA_VALUE]
        ifg.convert_to_nans()
        ifg.convert_to_radians()
        idx_ifg = IndexedIfg(index, IfgPhase(ifg.phase_data))
        return idx_ifg

    process_ifgs = mpiops.array_split(list(enumerate(ifgs)))
    ret_combined = {}
    for idx, _ifg in process_ifgs:
        ret_combined[Edge(_ifg.first, _ifg.second)] = _func(_ifg, idx)
        _ifg.close()

    ret_combined = join_dicts(mpiops.comm.allgather(ret_combined))
    return ret_combined
Exemplo n.º 8
0
def _create_ifg_dict(params):
    """
    Save the preread_ifgs dict with information about the ifgs that are
    later used for fast loading of Ifg files in IfgPart class

    :param list dest_tifs: List of destination tifs
    :param dict params: Config dictionary
    :param list tiles: List of all Tile instances

    :return: preread_ifgs: Dictionary containing information regarding
                interferograms that are used later in workflow
    :rtype: dict
    """
    dest_tifs = [ifg_path for ifg_path in params[C.INTERFEROGRAM_FILES]]
    ifgs_dict = {}
    process_tifs = mpiops.array_split(dest_tifs)
    for d in process_tifs:
        ifg = Ifg(d.tmp_sampled_path) # get the writable copy
        ifg.open()
        nan_and_mm_convert(ifg, params)
        ifgs_dict[d.tmp_sampled_path] = PrereadIfg(
            path=d.sampled_path,
            tmp_path=d.tmp_sampled_path,
            nan_fraction=ifg.nan_fraction,
            first=ifg.first,
            second=ifg.second,
            time_span=ifg.time_span,
            nrows=ifg.nrows,
            ncols=ifg.ncols,
            metadata=ifg.meta_data
        )
        ifg.write_modified_phase() # update phase converted to mm
        ifg.close()
    ifgs_dict = join_dicts(mpiops.comm.allgather(ifgs_dict))

    ifgs_dict = mpiops.run_once(__save_ifgs_dict_with_headers_and_epochs, dest_tifs, ifgs_dict, params, process_tifs)

    params[C.PREREAD_IFGS] = ifgs_dict
    return ifgs_dict
Exemplo n.º 9
0
def _create_ifg_dict(params):
    """
    1. Convert ifg phase data into numpy binary files.
    2. Save the preread_ifgs dict with information about the ifgs that are
    later used for fast loading of Ifg files in IfgPart class

    :param list dest_tifs: List of destination tifs
    :param dict params: Config dictionary
    :param list tiles: List of all Tile instances

    :return: preread_ifgs: Dictionary containing information regarding
                interferograms that are used later in workflow
    :rtype: dict
    """
    dest_tifs = [ifg_path for ifg_path in params[cf.INTERFEROGRAM_FILES]]
    ifgs_dict = {}
    process_tifs = mpiops.array_split(dest_tifs)
    for d in process_tifs:
        ifg = shared._prep_ifg(d.sampled_path, params)
        ifgs_dict[d.tmp_sampled_path] = PrereadIfg(
            path=d.sampled_path,
            tmp_path=d.tmp_sampled_path,
            nan_fraction=ifg.nan_fraction,
            first=ifg.first,
            second=ifg.second,
            time_span=ifg.time_span,
            nrows=ifg.nrows,
            ncols=ifg.ncols,
            metadata=ifg.meta_data)
        ifg.close()
    ifgs_dict = join_dicts(mpiops.comm.allgather(ifgs_dict))

    ifgs_dict = mpiops.run_once(__save_ifgs_dict_with_headers_and_epochs,
                                dest_tifs, ifgs_dict, params, process_tifs)

    params[cf.PREREAD_IFGS] = ifgs_dict
    log.debug('Finished converting phase_data to numpy in process {}'.format(
        mpiops.rank))
    return ifgs_dict