Exemplo n.º 1
0
    def __generateMieEffective(self,
                               n_particle,
                               n_host,
                               particle_mu,
                               particle_sigma,
                               effective_model=True,
                               wavelen_n=1000,
                               wavelen_max=1100.0,
                               wavelen_min=100.0,
                               particle_n=20,
                               particle_max=20.0,
                               particle_min=1.0):
        '''
        Private function.
        Generates new effective mie-data file for the database.
        '''

        if particle_n < 10:
            print(
                "Too few particles to calculate \
                effective model: particle_n < 10")
            exit()
        n_x_rv = 10000
        n_tht = 91
        wavelengths = np.linspace(wavelen_min, wavelen_max, wavelen_n) / 1000.0
        p_diameters = np.linspace(particle_min, particle_max, particle_n)

        o_f = ("mie_eff_p-%dum-%dum-%d_" % (particle_min,
                                            particle_max,
                                            particle_n) +
               'np-%s_nh-%.2f_' % (n_particle.__format__('.2f'),
                                   n_host) +
               'wave-%.1fnm-%.1fnm-%d' % (wavelen_min,
                                          wavelen_max,
                                          wavelen_n) +
               '.hdf5')
        o_f = baseDir + '/' + o_f
        # Calculate particle distribution
        N = lognorm(particle_sigma, scale=np.exp(particle_mu))
        # Weight factors of each particle size
        pdf = N.pdf(p_diameters)
        pdf /= pdf.sum()

        weight = dict(zip(p_diameters, pdf))

        df = 0
        df = mie.generateMieDataEffective(wavelengths,
                                          p_normed_weights_dict=weight,
                                          number_of_rvs=n_x_rv,
                                          number_of_theta_angles=n_tht,
                                          n_particle=n_particle,
                                          n_silicone=n_host,
                                          p_diameters=p_diameters)
        print(df.info())
        mie.saveMieDataToHDF5([df],
                              particle_diameters=[p_diameters.mean()],
                              out_fname=o_f,
                              wavelengths=wavelengths * 1000.0)

        return(o_f)
Exemplo n.º 2
0
    def __generateMie(self,
                      n_particle,
                      n_host,
                      particle_mu,
                      particle_sigma,
                      effective_model=True,
                      wavelen_n=1000,
                      wavelen_max=1100.0,
                      wavelen_min=100.0,
                      particle_n=20,
                      particle_max=20.0,
                      particle_min=1.0):
        '''
        Private function.
        Generates new mie-data file for the database.
        '''
        n_x_rv = 1000
        n_tht = 90
        wavelengths = np.linspace(wavelen_min, wavelen_max, wavelen_n) / 1000.0
        p_diameters = np.linspace(particle_min, particle_max, particle_n)

        o_f = ("mie_p-%dum-%dum-%d_" % (particle_min,
                                        particle_max,
                                        particle_n) +
               'np-%s_nh-%.2f_' % (n_particle.__format__('.2f'),
                                   n_host) +
               'wave-%.1fnm-%.1fnm-%d' % (wavelen_min,
                                          wavelen_max,
                                          wavelen_n) +
               '.hdf5')
        o_f = baseDir + '/' + o_f

        df = mie.generateMieData(wavelengths,
                                 number_of_rvs=n_x_rv,
                                 number_of_theta_angles=n_tht,
                                 n_particle=n_particle,
                                 n_silicone=n_host,
                                 p_diameters=p_diameters)
        mie.saveMieDataToHDF5([df],
                              particle_diameters=p_diameters,
                              out_fname=o_f,
                              wavelengths=wavelengths * 1000.0)

        return(o_f)
Exemplo n.º 3
0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy as np

from pyraytracer import mieGenerator as mie

if __name__ == '__main__':
    w = np.linspace(100, 1100, 501)
    p = np.linspace(3, 35, 50)

    p_weights = dict(zip(p, np.ones(50) / 50.0))

    df = mie.generateMieDataEffective(wavelengths=w,
                                      p_normed_weights_dict=p_weights,
                                      number_of_rvs=1000,
                                      number_of_theta_angles=90,
                                      n_particle=1.83,
                                      n_silicone=1.55,
                                      p_diameters=p)

    mie.saveMieDataToHDF5(df_list=[df],
                          particle_diameters=[1],
                          wavelengths=w,
                          out_fname="mieData.hdf5")