Exemplo n.º 1
0
def true_ape(ns):
    """Analytic APE"""
    true_ape = []
    prior_cov = torch.diag(prior_sds**2)
    designs = [
        group_assignment_matrix(torch.tensor([n1, N - n1])) for n1 in ns
    ]
    for i in range(len(ns)):
        x = designs[i]
        posterior_cov = analytic_posterior_cov(prior_cov, x, torch.tensor(1.))
        true_ape.append(0.5 * torch.logdet(2 * np.pi * np.e * posterior_cov))
    return torch.tensor(true_ape)
Exemplo n.º 2
0
def estimated_ape(ns, num_vi_steps):
    designs = [
        group_assignment_matrix(torch.tensor([n1, N - n1])) for n1 in ns
    ]
    X = torch.stack(designs)
    est_ape = vi_ape(
        model,
        X,
        observation_labels="y",
        target_labels="w",
        vi_parameters={
            "guide": guide,
            "optim": optim.Adam({"lr": 0.05}),
            "loss": TraceEnum_ELBO(
                strict_enumeration_warning=False).differentiable_loss,
            "num_steps": num_vi_steps
        },
        is_parameters={"num_samples": 1})
    return est_ape
Exemplo n.º 3
0
- Donsker-Varadhan
- Barber-Agakov

TODO:

- better guides- allow different levels of amortization
- SVI with BA-style guides
"""

#########################################################################################
# Designs
#########################################################################################
# All design tensors have shape: batch x n x p
# AB test
AB_test_11d_10n_2p = torch.stack(
    [group_assignment_matrix(torch.tensor([n, 10 - n])) for n in range(0, 11)])
AB_test_2d_10n_2p = torch.stack(
    [group_assignment_matrix(torch.tensor([n, 10 - n])) for n in [0, 5]])

# Design on S^1
item_thetas = torch.linspace(0., np.pi, 10).unsqueeze(-1)
X_circle_10d_1n_2p = torch.stack([item_thetas.cos(), -item_thetas.sin()],
                                 dim=-1)
item_thetas_small = torch.linspace(0., np.pi / 2, 5).unsqueeze(-1)
X_circle_5d_1n_2p = torch.stack(
    [item_thetas_small.cos(), -item_thetas_small.sin()], dim=-1)

# Random effects designs
AB_test_reff_6d_10n_12p, AB_sigmoid_design_6d = rf_group_assignments(10)

#########################################################################################
Exemplo n.º 4
0
                               group_normal_guide)
from pyro.contrib.glmm.guides import LinearModelGuide, GuideDV
from pyro.contrib.oed.eig import (vi_ape, naive_rainforth_eig,
                                  donsker_varadhan_eig, barber_agakov_ape)
from pyro.contrib.oed.util import linear_model_ground_truth
from pyro.infer import Trace_ELBO

logger = logging.getLogger(__name__)

#########################################################################################
# Designs
#########################################################################################
# All design tensors have shape: batch x n x p
# AB test
AB_test_2d_10n_2p = torch.stack(
    [group_assignment_matrix(torch.tensor([n, 10 - n])) for n in [0, 5]])

# Design on S^1
item_thetas_small = torch.linspace(0., np.pi / 2, 5).unsqueeze(-1)
X_circle_5d_1n_2p = torch.stack(
    [item_thetas_small.cos(), -item_thetas_small.sin()], dim=-1)

#########################################################################################
# Models
#########################################################################################
# Linear models
basic_2p_linear_model_sds_10_2pt5, basic_2p_guide = zero_mean_unit_obs_sd_lm(
    torch.tensor([10., 2.5]))
_, basic_2p_guide_w1 = zero_mean_unit_obs_sd_lm(torch.tensor([10., 2.5]),
                                                coef_label="w1")
basic_2p_ba_guide = lambda d: LinearModelGuide(d, {"w": 2})  # noqa: E731