Exemplo n.º 1
0
def test_sstrvae_disc_sites_fn(invariances):
    data_dim = (3, 8, 8)
    x = torch.randn(data_dim[0], torch.prod(tt(data_dim[1:])).item())
    coord = 0
    if invariances is not None:
        coord = len(invariances)
        if 't' in invariances and len(data_dim[1:]) == 2:
            coord = coord + 1
    model = models.ssiVAE(data_dim[1:], 2, 3, invariances=invariances)
    guide_trace, model_trace = get_enum_traces(model, x)
    assert_(isinstance(model_trace.nodes["y"]['fn'], dist.OneHotCategorical))
    assert_(isinstance(guide_trace.nodes["y"]['fn'], dist.OneHotCategorical))
Exemplo n.º 2
0
def test_sstrvae_disc_sites_dims(invariances):
    data_dim = (3, 8, 8)
    x = torch.randn(data_dim[0], torch.prod(tt(data_dim[1:])).item())
    coord = 0
    if invariances is not None:
        coord = len(invariances)
        if 't' in invariances and len(data_dim[1:]) == 2:
            coord = coord + 1
    model = models.ssiVAE(data_dim[1:], 2, 3, invariances=invariances)
    guide_trace, model_trace = get_enum_traces(model, x)
    assert_equal(model_trace.nodes["y"]['value'].shape, (3, data_dim[0], 3))
    assert_equal(guide_trace.nodes["y"]['value'].shape, (3, data_dim[0], 3))
Exemplo n.º 3
0
def test_sstrvae_encode(invariances):
    data_dim = (3, 8, 8)
    x = torch.randn(data_dim[0], torch.prod(tt(data_dim[1:])).item())
    coord = 0
    if invariances is not None:
        coord = len(invariances)
        if 't' in invariances:
            coord = coord + 1
    model = models.ssiVAE(data_dim[1:], 2, 5, invariances=invariances)
    encoded = model.encode(x)
    assert_equal(encoded[0].shape, encoded[1].shape)
    assert_equal(encoded[0].shape, (data_dim[0], coord + 2))
    assert_equal(encoded[2].shape, (data_dim[0], ))
Exemplo n.º 4
0
def test_auxsvi_trainer_cls(invariances):
    data_dim = (5, 8, 8)
    train_unsup = torch.randn(data_dim[0], torch.prod(tt(data_dim[1:])).item())
    train_sup = train_unsup + .1 * torch.randn_like(train_unsup)
    labels = dist.OneHotCategorical(torch.ones(data_dim[0], 3)).sample()
    loader_unsup, loader_sup, loader_val = utils.init_ssvae_dataloaders(
        train_unsup, (train_sup, labels), (train_sup, labels), batch_size=2)
    vae = models.ssiVAE(data_dim[1:], 2, 3, invariances)
    trainer = trainers.auxSVItrainer(vae)
    weights_before = dc(vae.state_dict())
    for _ in range(2):
        trainer.step(loader_unsup, loader_sup, loader_val)
    weights_after = vae.state_dict()
    assert_(not torch.isnan(tt(trainer.history["training_loss"])).any())
    assert_(not assert_weights_equal(weights_before, weights_after))
Exemplo n.º 5
0
def test_auxsvi_trainer_swa(invariances):
    data_dim = (5, 8, 8)
    train_unsup = torch.randn(data_dim[0], torch.prod(tt(data_dim[1:])).item())
    train_sup = train_unsup + .1 * torch.randn_like(train_unsup)
    labels = dist.OneHotCategorical(torch.ones(data_dim[0], 3)).sample()
    loader_unsup, loader_sup, _ = utils.init_ssvae_dataloaders(
        train_unsup, (train_sup, labels), (train_sup, labels), batch_size=2)
    vae = models.ssiVAE(data_dim[1:], 2, 3, invariances)
    trainer = trainers.auxSVItrainer(vae)
    for _ in range(3):
        trainer.step(loader_unsup, loader_sup)
        trainer.save_running_weights("encoder_y")
    weights_final = dc(vae.encoder_y.state_dict())
    trainer.average_weights("encoder_y")
    weights_aver = vae.encoder_y.state_dict()
    assert_(not assert_weights_equal(weights_final, weights_aver))
Exemplo n.º 6
0
def test_sstrvae_decoder_sampler(sampler, expected_dist):
    data_dim = (2, 64)
    x = torch.randn(*data_dim)
    model = models.ssiVAE(data_dim[1:], 2, 3, coord=1, sampler_d=sampler)
    _, model_trace = get_enum_traces(model, x)
    assert_(isinstance(model_trace.nodes["x"]['fn'].base_dist, expected_dist))