Exemplo n.º 1
0
 def testInsertSame(self):
     tree = RTree()
     rect = G.rect()
     xs = [ TstO(rect) for i in range(11) ]
     for x in xs:
         tree.insert(x,x.rect)
         self.invariants(tree)
Exemplo n.º 2
0
 def testInsertSame(self):
     tree = RTree()
     rect = G.rect()
     xs = [TstO(rect) for i in range(11)]
     for x in xs:
         tree.insert(x, x.rect)
         self.invariants(tree)
Exemplo n.º 3
0
 def add_transformation(self, transform_matrix):
     """Adds a transformation to all tiles"""
     self.rtree = RTree()
     for single_tile in self.single_tiles:
         single_tile.add_transformation(transform_matrix)
         bbox = single_tile.get_bbox()
         # pyrtree uses the (x_min, y_min, x_max, y_max) notation
         self.rtree.insert(single_tile,
                           Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
Exemplo n.º 4
0
 def __init__(self, single_tiles, blend_type="NO_BLENDING"):
     """Receives a number of image paths, and for each a transformation matrix"""
     self.blend_type = self.BLEND_TYPE[blend_type]
     self.single_tiles = single_tiles
     # Create an RTree of the bounding boxes of the tiles
     self.rtree = RTree()
     for t in self.single_tiles:
         bbox = t.get_bbox()
         # pyrtree uses the (x_min, y_min, x_max, y_max) notation
         self.rtree.insert(t, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
Exemplo n.º 5
0
    def testDegenerateContainer(self):
        """ Tests that an r-tree still works like a container even with highly overlapping rects. """
        xs = [ TstO(r) for r in take(1000,G.rect, 20.0) ]
        tree = RTree()
        for x in xs: 
            tree.insert(x,x.rect)
            self.invariants(tree)

        ws = [ x.leaf_obj() for x in tree.walk(lambda x,y: True) if x.is_leaf() ]
        for x in xs: self.assertTrue(x in ws)
Exemplo n.º 6
0
def newTree():
    xs = [
        RectWrapper(r, idx)
        for idx, r in enumerate(take(RECT_COUNT, rgen.rect, MAX_LENGTH))
    ]
    tree = RTree()
    for x in xs:
        tree.insert(x, x.rect)

    return tree, xs
Exemplo n.º 7
0
def _load_trucks_into_tree(inp_file):
	'''
	Internal function to load trucks, given in inp_file csv, into an RTree.
	Takes input file as path argument, return RTree.
	'''
	tree = RTree()
	for t in _get_trucks_from_file(inp_file):
		tree.insert(t, Rect(t.lat-TRUCK_SIZE, t.lon-TRUCK_SIZE,
					t.lat+TRUCK_SIZE, t.lon+TRUCK_SIZE))
	return tree
Exemplo n.º 8
0
    def testDegenerateContainer(self):
        """ Tests that an r-tree still works like a container even with highly overlapping rects. """
        xs = [TstO(r) for r in take(1000, G.rect, 20.0)]
        tree = RTree()
        for x in xs:
            tree.insert(x, x.rect)
            self.invariants(tree)

        ws = [
            x.leaf_obj() for x in tree.walk(lambda x, y: True) if x.is_leaf()
        ]
        for x in xs:
            self.assertTrue(x in ws)
Exemplo n.º 9
0
 def testPointQuery(self):
     xs = [ TstO(r) for r in take(1000,G.rect, 0.01) ]
     tree = RTree()
     for x in xs:
         tree.insert(x,x.rect)
         self.invariants(tree)
     
     for x in xs:
         qp = G.pointInside(x.rect)
         self.assertTrue(x.rect.does_containpoint(qp))
         op = G.pointOutside(x.rect)
         rs = list([r.leaf_obj() for r in tree.query_point(qp)])
         self.assertTrue(x in rs, "Not in results of len %d :(" % (len(rs)))
         rrs = list([r.leaf_obj() for r in tree.query_point(op)])
         self.assertFalse(x in rrs)
Exemplo n.º 10
0
    def testContainer(self):
        """ Test container-like behaviour. """
        xs = [ TstO(r) for r in take(100,G.rect, 0.1) ]
        tree = RTree()
        for x in xs: 
            tree.insert(x,x.rect)
            self.invariants(tree)

        ws = [ x.leaf_obj() for x in tree.walk(lambda x,y: True) if x.is_leaf() ]
        self.invariants(tree)
        rrs = collections.defaultdict(int)
        
        for w in ws:
            rrs[w] = rrs[w] + 1

        for x in xs: self.assertEquals(rrs[x], 1)
 def add_transformation(self, model):
     """Adds a transformation to all tiles"""
     self.rtree = RTree()
     for single_tile in self.single_tiles:
         single_tile.add_transformation(model)
         bbox = single_tile.get_bbox()
         # pyrtree uses the (x_min, y_min, x_max, y_max) notation
         self.rtree.insert(single_tile, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
 def __init__(self, single_tiles, blend_type="NO_BLENDING"):
     """Receives a number of image paths, and for each a transformation matrix"""
     self.blend_type = self.BLEND_TYPE[blend_type]
     self.single_tiles = single_tiles
     # Create an RTree of the bounding boxes of the tiles
     self.rtree = RTree()
     for t in self.single_tiles:
         bbox = t.get_bbox()
         # pyrtree uses the (x_min, y_min, x_max, y_max) notation
         self.rtree.insert(t, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
Exemplo n.º 13
0
    def testContainer(self):
        """ Test container-like behaviour. """
        xs = [TstO(r) for r in take(100, G.rect, 0.1)]
        tree = RTree()
        for x in xs:
            tree.insert(x, x.rect)
            self.invariants(tree)

        ws = [
            x.leaf_obj() for x in tree.walk(lambda x, y: True) if x.is_leaf()
        ]
        self.invariants(tree)
        rrs = collections.defaultdict(int)

        for w in ws:
            rrs[w] = rrs[w] + 1

        for x in xs:
            self.assertEquals(rrs[x], 1)
Exemplo n.º 14
0
def predefinedTree():
    xs = []
    tree = RTree()
    rid = 0
    for row in range(DIMENSION):
        for col in range(DIMENSION):
            x1 = 10 * row
            y1 = 10 * col
            x2 = x1 + 5
            y2 = y1 + 5
            rectangle = rgen.rect_from_coords(x1, y1, x2, y2)
            xs.append(RectWrapper(rectangle, rid))
            rid += 1


#    for x in xs:
#        tree.insert(x, x.rect)

    return tree, xs
Exemplo n.º 15
0
    def testPointQuery(self):
        xs = [TstO(r) for r in take(1000, G.rect, 0.01)]
        tree = RTree()
        for x in xs:
            tree.insert(x, x.rect)
            self.invariants(tree)

        for x in xs:
            qp = G.pointInside(x.rect)
            self.assertTrue(x.rect.does_containpoint(qp))
            op = G.pointOutside(x.rect)
            rs = list([r.leaf_obj() for r in tree.query_point(qp)])
            self.assertTrue(x in rs, "Not in results of len %d :(" % (len(rs)))
            rrs = list([r.leaf_obj() for r in tree.query_point(op)])
            self.assertFalse(x in rrs)
Exemplo n.º 16
0
    def testRectQuery(self):
        xs = [TstO(r) for r in take(1000, G.rect, 0.01)]
        rt = RTree()
        for x in xs:
            rt.insert(x, x.rect)
            self.invariants(rt)

        for x in xs:
            qrect = G.intersectingWith(x.rect)
            orect = G.disjointWith(x.rect)
            self.assertTrue(qrect.does_intersect(x.rect))
            p = G.pointInside(x.rect)
            res = list([ro.leaf_obj() for ro in rt.query_point(p)])
            self.invariants(rt)
            self.assertTrue(x in res)
            res2 = list([r.leaf_obj() for r in rt.query_rect(qrect)])
            self.assertTrue(x in res2)
            rres = list([r.leaf_obj() for r in rt.query_rect(orect)])
            self.assertFalse(x in rres)
Exemplo n.º 17
0
    def testRectQuery(self):
        xs = [ TstO(r) for r in take(1000, G.rect, 0.01) ]
        rt = RTree()
        for x in xs: 
            rt.insert(x,x.rect)
            self.invariants(rt)

        for x in xs:
            qrect = G.intersectingWith(x.rect)
            orect = G.disjointWith(x.rect)
            self.assertTrue(qrect.does_intersect(x.rect))
            p = G.pointInside(x.rect)
            res = list([ro.leaf_obj() for ro in rt.query_point(p)])
            self.invariants(rt)
            self.assertTrue(x in res)
            res2 = list([r.leaf_obj() for r in rt.query_rect(qrect)])
            self.assertTrue(x in res2)
            rres = list([r.leaf_obj() for r in rt.query_rect(orect)])
            self.assertFalse(x in rres)
class MultipleTilesRenderer:
    BLEND_TYPE = {
            "NO_BLENDING" : 0,
            "AVERAGING" : 1,
            "LINEAR" : 2
        }
    def __init__(self, single_tiles, blend_type="NO_BLENDING"):
        """Receives a number of image paths, and for each a transformation matrix"""
        self.blend_type = self.BLEND_TYPE[blend_type]
        self.single_tiles = single_tiles
        # Create an RTree of the bounding boxes of the tiles
        self.rtree = RTree()
        for t in self.single_tiles:
            bbox = t.get_bbox()
            # pyrtree uses the (x_min, y_min, x_max, y_max) notation
            self.rtree.insert(t, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
        #should_compute_mask = False if self.blend_type == 0 else True
        #self.single_tiles = [SingleTileAffineRenderer(img_path, img_shape[1], img_shape[0], compute_mask=should_compute_mask) for img_path, img_shape in zip(img_paths, img_shapes)]
        #for i, matrix in enumerate(transform_matrices):
        #    self.single_tiles[i].add_transformation(matrix)

    def add_transformation(self, model):
        """Adds a transformation to all tiles"""
        self.rtree = RTree()
        for single_tile in self.single_tiles:
            single_tile.add_transformation(model)
            bbox = single_tile.get_bbox()
            # pyrtree uses the (x_min, y_min, x_max, y_max) notation
            self.rtree.insert(single_tile, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
 
        
    def render(self):
        if len(self.single_tiles) == 0:
            return None, None

        # Render all tiles by finding the bounding box, and using crop
        all_bboxes = np.array([t.get_bbox() for t in self.single_tiles]).T
        bbox = [np.min(all_bboxes[0]), np.max(all_bboxes[1]), np.min(all_bboxes[2]), np.max(all_bboxes[3])]
        crop, start_point = self.crop(bbox[0], bbox[2], bbox[1], bbox[3])
        return crop, start_point

    def crop(self, from_x, from_y, to_x, to_y):
        if len(self.single_tiles) == 0:
            return None, None

        # Distinguish between the different types of blending
        if self.blend_type == 0: # No blending
            res = np.zeros((round(to_y + 1 - from_y), round(to_x + 1 - from_x)), dtype=np.uint8)
            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect( Rect(from_x, from_y, to_x, to_y) )
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, _ = t.crop(from_x, from_y, to_x, to_y)
                if t_img is not None:
                    res[t_start_point[1] - from_y: t_img.shape[0] + (t_start_point[1] - from_y),
                        t_start_point[0] - from_x: t_img.shape[1] + (t_start_point[0] - from_x)] = t_img

        elif self.blend_type == 1: # Averaging
            # Do the calculation on a uint16 image (for overlapping areas), and convert to uint8 at the end
            res = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)), 
                np.float32)
            res_mask = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                np.float32)

            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect( Rect(from_x, from_y, to_x, to_y) )
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, t_mask = t.crop(from_x, from_y, to_x, to_y)
                if t_img is not None:
                    t_mask, _, _ = AlphaTileRenderer(t).crop(
                        from_x, from_y, to_x, to_y)
                    res[t_start_point[1] - from_y: t_img.shape[0] + (t_start_point[1] - from_y),
                        t_start_point[0] - from_x: t_img.shape[1] + (t_start_point[0] - from_x)] += t_img
                    res_mask[t_start_point[1] - from_y: t_img.shape[0] + (t_start_point[1] - from_y),
                             t_start_point[0] - from_x: t_img.shape[1] + (t_start_point[0] - from_x)] += t_mask

            # Change the values of 0 in the mask to 1, to avoid division by 0
            res_mask[res_mask == 0] = 1
            res = res / res_mask
            res = np.maximum(0, np.minimum(255, res)).astype(np.uint8)

        elif self.blend_type == 2: # Linear averaging
            # Do the calculation on a uint32 image (for overlapping areas), and convert to uint8 at the end
            # For each pixel use the min-distance to an edge as a weight, and store the
            # average the outcome according to the weight
            res = np.zeros((round(to_y + 1 - from_y), round(to_x + 1 - from_x)), dtype=np.uint32)
            res_weights = np.zeros((round(to_y + 1 - from_y), round(to_x + 1 - from_x)), dtype=np.uint16)

            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect( Rect(from_x, from_y, to_x, to_y) )
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, t_weights = t.crop_with_distances(from_x, from_y, to_x, to_y)
                if t_img is not None:
                    print "actual image start_point:", t_start_point, "and shape:", t_img.shape
                    res[t_start_point[1] - from_y: t_img.shape[0] + (t_start_point[1] - from_y),
                        t_start_point[0] - from_x: t_img.shape[1] + (t_start_point[0] - from_x)] += t_img * t_weights
                    res_weights[t_start_point[1] - from_y: t_img.shape[0] + (t_start_point[1] - from_y),
                                t_start_point[0] - from_x: t_img.shape[1] + (t_start_point[0] - from_x)] += t_weights

            # Change the weights that are 0 to 1, to avoid division by 0
            res_weights[res_weights < 1] = 1
            res = res / res_weights
            res = np.maximum(0, np.minimum(255, res)).astype(np.uint8)

        return res, (from_x, from_y)
Exemplo n.º 19
0
from pyrtree import Rect, RTree

DATA_SIZE = 100

# PyRTree Insert and Search Test. This PyRTree is query only index.

obj = []
for x in range(DATA_SIZE):
    # Create objects with rectangles for objs, Rect(0, 0, 1, 1), Rect(1, 1, 2, 2); name obj0, obj1, ...
    obj.append([Rect(0 + x, 0 + x, 1 + x, 1 + x), 'obj' + x.__str__()])

rtree = RTree() # tree creation

# pyrtree uses the Rect (x_min, y_min, x_max, y_max) notation
for x in range(DATA_SIZE):
    rtree.insert(obj[x], obj[x][0]) # element insertion with a given box

# Query the tree
rect_res = rtree.query_rect(Rect(1, 1, 4, 4) )

# Traverse the query result
for rtree_node in rect_res:
    if not rtree_node.is_leaf():
        continue
    t = rtree_node.leaf_obj()
    print(t[0].x, t[0].y, t[0].xx, t[0].yy, t[1])

# Get the internal nodes which are at the deepest level of the tree. Each internal contains a number of leaf nodes
for nodes in rtree.get_last_level():
    print(nodes)
Exemplo n.º 20
0
 def testCons(self):
     n = RTree()
Exemplo n.º 21
0
with r trees;
change all the things to rect
change the circle to rect
tree construction
querying
'''

#print "\n"
#print "\n"
#print "\n"
#print "\n"
for x123 in pointrtree:

    print x123

t = RTree()
i = 0
# ax = fig.add_axes([0,0,1,1])
'''
insertion is done
'''
#print "tag 10 is :)"
#print pointrtree[0]
#print "aaa"
for rectangepoints in pointrtree:
    x1 = rectangepoints[0][0]
    y1 = rectangepoints[0][1]
    x2 = rectangepoints[1][0]
    y2 = rectangepoints[1][1]
    # #print x1
    # wi=x2-x1
Exemplo n.º 22
0
class MultipleTilesAffineRenderer:
    BLEND_TYPE = {"NO_BLENDING": 0, "AVERAGING": 1, "LINEAR": 2}

    def __init__(self, single_tiles, blend_type="NO_BLENDING"):
        """Receives a number of image paths, and for each a transformation matrix"""
        self.blend_type = self.BLEND_TYPE[blend_type]
        self.single_tiles = single_tiles
        # Create an RTree of the bounding boxes of the tiles
        self.rtree = RTree()
        for t in self.single_tiles:
            bbox = t.get_bbox()
            # pyrtree uses the (x_min, y_min, x_max, y_max) notation
            self.rtree.insert(t, Rect(bbox[0], bbox[2], bbox[1], bbox[3]))
        #should_compute_mask = False if self.blend_type == 0 else True
        #self.single_tiles = [SingleTileAffineRenderer(img_path, img_shape[1], img_shape[0], compute_mask=should_compute_mask) for img_path, img_shape in zip(img_paths, img_shapes)]
        #for i, matrix in enumerate(transform_matrices):
        #    self.single_tiles[i].add_transformation(matrix)

    def add_transformation(self, transform_matrix):
        """Adds a transformation to all tiles"""
        self.rtree = RTree()
        for single_tile in self.single_tiles:
            single_tile.add_transformation(transform_matrix)
            bbox = single_tile.get_bbox()
            # pyrtree uses the (x_min, y_min, x_max, y_max) notation
            self.rtree.insert(single_tile,
                              Rect(bbox[0], bbox[2], bbox[1], bbox[3]))

    def render(self):
        if len(self.single_tiles) == 0:
            return None, None

        # Render all tiles by finding the bounding box, and using crop
        all_bboxes = np.array([t.get_bbox() for t in self.single_tiles]).T
        bbox = [
            np.min(all_bboxes[0]),
            np.max(all_bboxes[1]),
            np.min(all_bboxes[2]),
            np.max(all_bboxes[3])
        ]
        crop, start_point = self.crop(bbox[0], bbox[2], bbox[1], bbox[3])
        return crop, start_point

    def crop(self, from_x, from_y, to_x, to_y):
        if len(self.single_tiles) == 0:
            return None, None

        # Distinguish between the different types of blending
        if self.blend_type == 0:  # No blending
            res = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                dtype=np.uint8)
            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect(Rect(from_x, from_y, to_x, to_y))
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, _ = t.crop(from_x, from_y, to_x, to_y)
                if t_img is not None:
                    res[t_start_point[1] - from_y:t_img.shape[0] +
                        (t_start_point[1] - from_y),
                        t_start_point[0] - from_x:t_img.shape[1] +
                        (t_start_point[0] - from_x)] = t_img

        elif self.blend_type == 1:  # Averaging
            # Do the calculation on a uint16 image (for overlapping areas), and convert to uint8 at the end
            res = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                dtype=np.uint16)
            res_mask = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                dtype=np.uint8)

            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect(Rect(from_x, from_y, to_x, to_y))
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, t_mask = t.crop(from_x, from_y, to_x,
                                                      to_y)
                if t_img is not None:
                    res[t_start_point[1] - from_y:t_img.shape[0] +
                        (t_start_point[1] - from_y),
                        t_start_point[0] - from_x:t_img.shape[1] +
                        (t_start_point[0] - from_x)] += t_img
                    #t_start_point[0] - from_x: t_img.shape[1] + t_start_point[0] - from_x] += t_mask * 50
                    res_mask[t_start_point[1] - from_y:t_img.shape[0] +
                             (t_start_point[1] - from_y),
                             t_start_point[0] - from_x:t_img.shape[1] +
                             (t_start_point[0] - from_x)] += t_mask

            # Change the values of 0 in the mask to 1, to avoid division by 0
            res_mask[res_mask == 0] = 1
            res = res / res_mask
            res = res.astype(np.uint8)

        elif self.blend_type == 2:  # Linear averaging
            # Do the calculation on a uint32 image (for overlapping areas), and convert to uint8 at the end
            # For each pixel use the min-distance to an edge as a weight, and store the
            # average the outcome according to the weight
            res = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                dtype=np.uint32)
            res_weights = np.zeros(
                (round(to_y + 1 - from_y), round(to_x + 1 - from_x)),
                dtype=np.uint16)

            # render only relevant parts, and stitch them together
            # filter only relevant tiles using rtree
            rect_res = self.rtree.query_rect(Rect(from_x, from_y, to_x, to_y))
            for rtree_node in rect_res:
                if not rtree_node.is_leaf():
                    continue
                t = rtree_node.leaf_obj()
                t_img, t_start_point, t_weights = t.crop_with_distances(
                    from_x, from_y, to_x, to_y)
                if t_img is not None:
                    res[t_start_point[1] - from_y:t_img.shape[0] +
                        (t_start_point[1] - from_y),
                        t_start_point[0] - from_x:t_img.shape[1] +
                        (t_start_point[0] - from_x)] += t_img * t_weights
                    res_weights[t_start_point[1] - from_y:t_img.shape[0] +
                                (t_start_point[1] - from_y),
                                t_start_point[0] - from_x:t_img.shape[1] +
                                (t_start_point[0] - from_x)] += t_weights

            # Change the weights that are 0 to 1, to avoid division by 0
            res_weights[res_weights < 1] = 1
            res = res / res_weights
            res = res.astype(np.uint8)

        return res, (from_x, from_y)