Exemplo n.º 1
0
    def __init__(self,
                 psc_file,
                 variable_names,
                 v_name,
                 ranges,
                 psc_string=None):
        self.psc_file = psc_file
        self.psc_string = psc_string
        self.variable_names = variable_names
        self.v_name = 'J_{0}'.format(v_name) if v_name[0:2] != 'J_' else v_name
        self.ranges = ranges

        import pysces
        if self.psc_string is None:
            self.mod = pysces.model(self.psc_file)
        else:
            self.mod = pysces.model(self.psc_file,
                                    loader='string',
                                    fString=self.psc_string)
        self.mod.SetQuiet()

        self.variables = None
        self.v = numpy.array([])

        self.scanner = pysces.Scanner(self.mod)
        for n, r in zip(self.variable_names, self.ranges):
            self.scanner.addScanParameter(n, r[0], r[1], r[2])
        self.scanner.addUserOutput(self.v_name)
        self.scanner.Run()
        results = self.scanner.getResultMatrix()
        self.variables = results[:, 0:-1]
        self.v = results[:, -1]
Exemplo n.º 2
0
    def __init__(self, psc_file, variable_names, v_name, ranges, psc_string=None):
        self.psc_file = psc_file
        self.psc_string = psc_string
        self.variable_names = variable_names
        self.v_name = 'J_{0}'.format(v_name) if v_name[0:2] != 'J_' else v_name
        self.ranges = ranges

        import pysces
        if self.psc_string is None:
            self.mod = pysces.model(self.psc_file)
        else:
            self.mod = pysces.model(self.psc_file, loader='string', fString=self.psc_string)
        self.mod.SetQuiet()

        self.variables = None
        self.v = numpy.array([])

        self.scanner = pysces.Scanner(self.mod)
        for n, r in zip(self.variable_names, self.ranges):
            self.scanner.addScanParameter(n, r[0], r[1], r[2])
        self.scanner.addUserOutput(self.v_name)
        self.scanner.Run()
        results = self.scanner.getResultMatrix()
        self.variables = results[:, 0:-1]
        self.v = results[:, -1]
        # self.v = self.v.reshape(len(self.v), 1)
Exemplo n.º 3
0
Arquivo: model.py Projeto: palm86/pod
    def _init(self, parameters):
        import pysces
        if self.psc_string is None:
            self.mod = pysces.model(self.psc_file)
        else:
            self.mod = pysces.model(self.psc_file, loader='string', fString=self.psc_string)
        self.mod.SetQuiet()

        self.parameter_names = [i.name for i in parameters]
Exemplo n.º 4
0
 def test_statemetab_linear1(self):
     lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
     lin.doLoad()
     lin.hybrd_mesg = 0
     lin.State()
     linmet = array([23.1025641, 38.61538462, 38.94871795], 'd')
     assert_array_almost_equal(lin.state_species, linmet)
Exemplo n.º 5
0
 def fitness(self, verbose=True):
     time = 1000
     if not self.cached_fitness is None:
         return self.cached_fitness
     with open("/home/calebsimmons/Hungry_Monsters/hungry_monsters/template.psc") as f:
         template = "".join(f.readlines())
         model = (
             (template % tuple(self.genotype))
             .replace("alpha", str(Chromosome.mrna_cost))
             .replace("beta", str(Chromosome.protein_cost))
             .replace("gamma", str(Chromosome.sugar_benefit))
             .replace("delta", str(Chromosome.enzyme_mrna_cost))
             .replace("zeta", str(Chromosome.enzyme_cost))
         )
         filename = "/home/calebsimmons/Hungry_Monsters/hungry_monsters/model%s.psc" % self.serial_no
         with open(filename, "w") as f:
             f.write(model)
     mod = stochpy.SSA(Method="TauLeaping", File=filename, dir=".")
     mod.DoStochSim(epsilon=1, mode="steps", end=time)
     mod.PlotTimeSim(species2plot=["ATP"])
     atp_label = mod.data_stochsim.species_labels.index("ATP")
     self.cached_fitness = mod.data_stochsim.species[-1][atp_label]
     # mod2 = Parser(filename)
     # atp_label2 = getATP(stochsimm(mod2.parse()))
     # self.cached_fitness2 = atp_label2[-1]
     mod3 = pysces.model(filename, dir="/home/calebsimmons/Hungry_Monsters/hungry_monsters")
     mod3.doSim(end=60, points=3000)
     mod3.SimPlot(plot=["ATP"])
     self.cached_fitness = mod3.data_sim.getSimData("ATP")[-1][1]
     if verbose:
         print self.cached_fitness
     return self.cached_fitness
Exemplo n.º 6
0
def fix_metabolite(mod, fix, model_name=None):
    """
    Fix a metabolite in a model and return a new model with the fixed
    metabolite.

    Parameters
    ----------
    mod : PysMod
        The original model.
    fix : str
        The metabolite to fix.
    model_name : str, optional (Default : none)
        The file name to use when saving the model (in psc/orca).
        If None it defaults to original_model_name_fix.

    Returns
    -------
    PysMod
        A new model instance with an additional fixed species.
    """
    assert fix in mod.species, "\nInvalid fixed species."

    if model_name is None:
        model_name = get_model_name(mod) + '_' + fix

    mod_str = mod_to_str(mod)
    fix_head, mod_str_sans_fix = strip_fixed(mod_str)
    new_fix_head = augment_fix_sting(fix_head, fix)
    new_mod = model(model_name, loader="string", fString=new_fix_head
                    + '\n' + mod_str_sans_fix)
    return new_mod
Exemplo n.º 7
0
    def test_cc_branch1(self):
        bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
        bra.doLoad()
        bra.hybrd_mesg = 0
        bra.State()
        bra.EvalEvar()
        bra.EvalCC()
        bracc=[0.25338970963029361000,-0.13797075277724413000,\
-0.21457061516904127000,0.32372624345386269000,0.39406892242342095000,0.38135649243870806000,\
-0.13797075277724413000,0.25338970963029356000,0.39406892242342095000,0.32372624345386258000,\
-0.21457061516904130000,0.38135649243870812000,-0.13797075277724413000,0.25338970963029356000,\
0.39406892242342095000,0.32372624345386258000,-0.21457061516904130000,0.38135649243870812000,\
0.05770947842652475500,0.05770947842652472700,0.08974915362718985400,0.32372624345386269000,\
0.08974915362718984000,0.38135649243870817000,0.25338970963029361000,-0.13797075277724413000,\
-0.21457061516904127000,0.32372624345386269000,0.39406892242342095000,0.38135649243870806000,\
0.05770947842652474100,0.05770947842652471300,0.08974915362718984000,0.32372624345386264000,\
0.08974915362718982600,0.38135649243870806000,-0.23751396180748979000,-0.23751396180748979000,\
-0.36937913195668803000,0.55728841856739109000,-0.36937913195668803000,0.65649776896096446000,\
-0.08622262758262820600,-0.08622262758262820600,-0.13409249329650016000,-0.48367318660804903000,\
-0.13409249329650016000,0.92430342836630586000,-0.79249085140642661000,-0.14644930661681688000,\
-0.22775636995026044000,0.34361981023636490000,0.41828517483934929000,0.40479154289778968000,\
-0.14644930661681685000,-0.79249085140642661000,0.41828517483934929000,0.34361981023636484000,\
-0.22775636995026050000,0.40479154289778979000]
        bracc_new = []
        for x in range(bra.cc_all.shape[0]):
            for y in range(bra.cc_all.shape[1]):
                bracc_new.append(round(bra.cc_all[x,y],2))
        for x in range(len(bracc)):
            bracc[x] = round(bracc[x],2)
            #os.sys.stderr.write(str(bracc[x]) + ' --> ' + str(bracc_new[x])+'\n')
        assert_array_almost_equal(bracc,bracc_new)
Exemplo n.º 8
0
 def test_statemetab_branch1(self):
     bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
     bra.doLoad()
     bra.hybrd_mesg = 0
     bra.State()
     bramet = array([4.8583996, 1.88547254, 1.49124431, 1.49124431], 'd')
     assert_array_almost_equal(bra.state_species, bramet)
Exemplo n.º 9
0
 def test_stateflux_linear1(self):
     lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
     lin.doLoad()
     lin.hybrd_mesg = 0
     lin.State()
     linflux = array([76.8974359, 76.8974359, 76.8974359, 76.8974359], 'd')
     assert_array_almost_equal(lin.state_flux, linflux)
Exemplo n.º 10
0
 def test_statemetab_branch1(self):
     bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
     bra.doLoad()
     bra.hybrd_mesg = 0
     bra.State()
     bramet = array([4.8583996,1.88547254,1.49124431,1.49124431],'d')
     assert_array_almost_equal(bra.state_species,bramet)
Exemplo n.º 11
0
 def fitness(self, verbose=True):
     time = 1000
     if not self.cached_fitness is None:
         return self.cached_fitness
     with open(
             "/home/calebsimmons/Hungry_Monsters/hungry_monsters/template.psc"
     ) as f:
         template = "".join(f.readlines())
         model = (template % tuple(self.genotype))\
             .replace("alpha",str(Chromosome.mrna_cost))\
             .replace("beta",str(Chromosome.protein_cost))\
             .replace("gamma",str(Chromosome.sugar_benefit))\
             .replace("delta",str(Chromosome.enzyme_mrna_cost))\
             .replace('zeta',str(Chromosome.enzyme_cost))
         filename = "/home/calebsimmons/Hungry_Monsters/hungry_monsters/model%s.psc" % self.serial_no
         with open(filename, 'w') as f:
             f.write(model)
     mod = stochpy.SSA(Method="TauLeaping", File=filename, dir='.')
     mod.DoStochSim(epsilon=1, mode="steps", end=time)
     mod.PlotTimeSim(species2plot=["ATP"])
     atp_label = mod.data_stochsim.species_labels.index('ATP')
     self.cached_fitness = mod.data_stochsim.species[-1][atp_label]
     #mod2 = Parser(filename)
     #atp_label2 = getATP(stochsimm(mod2.parse()))
     #self.cached_fitness2 = atp_label2[-1]
     mod3 = pysces.model(
         filename, dir='/home/calebsimmons/Hungry_Monsters/hungry_monsters')
     mod3.doSim(end=60, points=3000)
     mod3.SimPlot(plot=["ATP"])
     self.cached_fitness = mod3.data_sim.getSimData("ATP")[-1][1]
     if verbose:
         print self.cached_fitness
     return self.cached_fitness
Exemplo n.º 12
0
 def test_statemetab_moiety1(self):
     moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
     moi.doLoad()
     moi.hybrd_mesg = 0
     moi.State()
     moimet = array([3.6886875,16.25569882,7.3113125,4.39229787,41.02504596,2.60770213,0.42718994,2.57281006,2.44791155,17.0012171],'d')
     assert_array_almost_equal(moi.state_species,moimet)
Exemplo n.º 13
0
 def test_stateflux_linear1(self):
     lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
     lin.doLoad()
     lin.hybrd_mesg = 0
     lin.State()
     linflux = array([76.8974359, 76.8974359, 76.8974359, 76.8974359],'d')
     assert_array_almost_equal(lin.state_flux,linflux)
Exemplo n.º 14
0
    def test_cc_branch1(self):
        bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
        bra.doLoad()
        bra.hybrd_mesg = 0
        bra.State()
        bra.EvalEvar()
        bra.EvalCC()
        bracc=[0.25338970963029361000,-0.13797075277724413000,\
-0.21457061516904127000,0.32372624345386269000,0.39406892242342095000,0.38135649243870806000,\
-0.13797075277724413000,0.25338970963029356000,0.39406892242342095000,0.32372624345386258000,\
-0.21457061516904130000,0.38135649243870812000,-0.13797075277724413000,0.25338970963029356000,\
0.39406892242342095000,0.32372624345386258000,-0.21457061516904130000,0.38135649243870812000,\
0.05770947842652475500,0.05770947842652472700,0.08974915362718985400,0.32372624345386269000,\
0.08974915362718984000,0.38135649243870817000,0.25338970963029361000,-0.13797075277724413000,\
-0.21457061516904127000,0.32372624345386269000,0.39406892242342095000,0.38135649243870806000,\
0.05770947842652474100,0.05770947842652471300,0.08974915362718984000,0.32372624345386264000,\
0.08974915362718982600,0.38135649243870806000,-0.23751396180748979000,-0.23751396180748979000,\
-0.36937913195668803000,0.55728841856739109000,-0.36937913195668803000,0.65649776896096446000,\
-0.08622262758262820600,-0.08622262758262820600,-0.13409249329650016000,-0.48367318660804903000,\
-0.13409249329650016000,0.92430342836630586000,-0.79249085140642661000,-0.14644930661681688000,\
-0.22775636995026044000,0.34361981023636490000,0.41828517483934929000,0.40479154289778968000,\
-0.14644930661681685000,-0.79249085140642661000,0.41828517483934929000,0.34361981023636484000,\
-0.22775636995026050000,0.40479154289778979000]
        bracc_new = []
        for x in range(bra.cc_all.shape[0]):
            for y in range(bra.cc_all.shape[1]):
                bracc_new.append(round(bra.cc_all[x, y], 2))
        for x in range(len(bracc)):
            bracc[x] = round(bracc[x], 2)
            #os.sys.stderr.write(str(bracc[x]) + ' --> ' + str(bracc_new[x])+'\n')
        assert_array_almost_equal(bracc, bracc_new)
Exemplo n.º 15
0
 def test_stateflux_moiety1(self):
     moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
     moi.doLoad()
     moi.hybrd_mesg = 0
     moi.State()
     moiflux = array([250.01825652,250.01825652,250.01825652,250.01825652,250.01825652,250.01825652,250.01825652],'d')
     assert_array_almost_equal(moi.state_flux,moiflux)
Exemplo n.º 16
0
 def test_stateflux_branch1(self):
     bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
     bra.doLoad()
     bra.hybrd_mesg = 0
     bra.State()
     braflux = array([2.42139889,2.42139889,1.21069945,1.21069945,1.21069945,1.21069945],'d')
     assert_array_almost_equal(bra.state_flux,braflux)
Exemplo n.º 17
0
 def test_statemetab_linear1(self):
     lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
     lin.doLoad()
     lin.hybrd_mesg = 0
     lin.State()
     linmet = array([23.1025641, 38.61538462, 38.94871795],'d')
     assert_array_almost_equal(lin.state_species,linmet)
Exemplo n.º 18
0
 def sbml2pysces(self,model_xml):
     '''
     Use pysces to read the SBML file
     '''
     current_dir=os.getcwd()
     pysces_filename=os.path.join(current_dir,model_xml[-4]+'.psc')
     pysces.interface.convertSBML2PSC(model_xml,pscfile=pysces_filename)
     return pysces.model(pysces_filename)
Exemplo n.º 19
0
 def test_stateflux_branch1(self):
     bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
     bra.doLoad()
     bra.hybrd_mesg = 0
     bra.State()
     braflux = array([
         2.42139889, 2.42139889, 1.21069945, 1.21069945, 1.21069945,
         1.21069945
     ], 'd')
     assert_array_almost_equal(bra.state_flux, braflux)
Exemplo n.º 20
0
 def test_stateflux_moiety1(self):
     moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
     moi.doLoad()
     moi.hybrd_mesg = 0
     moi.State()
     moiflux = array([
         250.01825652, 250.01825652, 250.01825652, 250.01825652,
         250.01825652, 250.01825652, 250.01825652
     ], 'd')
     assert_array_almost_equal(moi.state_flux, moiflux)
Exemplo n.º 21
0
 def test_statemetab_moiety1(self):
     moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
     moi.doLoad()
     moi.hybrd_mesg = 0
     moi.State()
     moimet = array([
         3.6886875, 16.25569882, 7.3113125, 4.39229787, 41.02504596,
         2.60770213, 0.42718994, 2.57281006, 2.44791155, 17.0012171
     ], 'd')
     assert_array_almost_equal(moi.state_species, moimet)
Exemplo n.º 22
0
    def test_elas_linear1(self):
        lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
        lin.doLoad()
        lin.hybrd_mesg = 0
        lin.State()
        lin.EvalEvar()
        line = [-0.30043348,0.,0., 1.50216739,-0.50216739,0., 0.,1.50650217,-0.50650217, 0.,0.,1.01300433]
        line_new = []
        for x in range(lin.elas_var.shape[0]):
            for y in range(lin.elas_var.shape[1]):
                line_new.append(round(lin.elas_var[x,y],2))
        for x in range(len(line)):
            line[x] = round(line[x],2)

        assert_array_almost_equal(line,line_new)
Exemplo n.º 23
0
def get_pysces_model(filename, target='Vode'):
    path, fname = os.path.split(filename)
    m = pysces.model(fname, dir=path)

    max_t = np.Inf

    parlist = m.__fixed_species__ + m.__parameters__
    pardict = dict([(pname, p['initial']) for pname, p in m.__pDict__.items()])
    varlist = m.__species__  # list ['s0', 's1', 's2']

    icdict = dict([(vname, v['initial']) for vname, v in m.__sDict__.items()
                   if not v['fixed']])
    fixed_species = dict([(pname, p['initial'])
                          for pname, p in m.__sDict__.items() if p['fixed']])
    pardict.update(fixed_species)

    fnspecs = {}
    for R in m.__reactions__:  # list ['R1', 'R2', 'R3', 'R4']
        R_info = m.__nDict__[R]
        #assert R_info['Modifiers'] == []
        assert R_info['Type'] == 'Rever'
        arglist = []
        for reagent in R_info['Reagents']:
            r = reagent.replace('self.', '')
            if r in varlist:
                arglist.append(r)
        arglist.sort()
        fnspecs[R] = (arglist, R_info['RateEq'].replace('self.', ''))

    varspecs = make_varspecs(m, fnspecs)

    for fname, fspec in m.__userfuncs__.items():
        # Don't know how these are implemented yet
        fnspec[fname] = fspec

    dsargs = args(name=fname[:-3],
                  varspecs=varspecs,
                  fnspecs=fnspecs,
                  pars=pardict,
                  ics=icdict,
                  tdata=[0, max_t])

    genclassname = target + '_ODEsystem'
    try:
        genclass = getattr(Generator, genclassname)
    except AttributeError:
        raise TypeError("Invalid ODE solver type")
    return genclass(dsargs)
Exemplo n.º 24
0
def get_pysces_model(filename, target='Vode'):
    path, fname = os.path.split(filename)
    m = pysces.model(fname, dir=path)

    max_t = np.Inf

    parlist = m.__fixed_species__ + m.__parameters__
    pardict = dict([(pname, p['initial']) for pname, p in m.__pDict__.items()])
    varlist = m.__species__ # list ['s0', 's1', 's2']

    icdict = dict([(vname, v['initial']) for vname, v in m.__sDict__.items() if not v['fixed']])
    fixed_species = dict([(pname, p['initial']) for pname, p in m.__sDict__.items() if p['fixed']])
    pardict.update(fixed_species)

    fnspecs = {}
    for R in m.__reactions__: # list ['R1', 'R2', 'R3', 'R4']
        R_info = m.__nDict__[R]
        #assert R_info['Modifiers'] == []
        assert R_info['Type'] == 'Rever'
        arglist = []
        for reagent in R_info['Reagents']:
            r = reagent.replace('self.','')
            if r in varlist:
                arglist.append(r)
        arglist.sort()
        fnspecs[R] = (arglist, R_info['RateEq'].replace('self.',''))

    varspecs = make_varspecs(m, fnspecs)

    for fname, fspec in m.__userfuncs__.items():
        # Don't know how these are implemented yet
        fnspec[fname] = fspec

    dsargs = args(name=fname[:-3],
                  varspecs=varspecs,
                  fnspecs=fnspecs,
                  pars=pardict,
                  ics=icdict,
                  tdata=[0, max_t])

    genclassname = target + '_ODEsystem'
    try:
        genclass = getattr(Generator, genclassname)
    except AttributeError:
        raise TypeError("Invalid ODE solver type")
    return genclass(dsargs)
Exemplo n.º 25
0
    def test_cc_moiety1(self):
        moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
        moi.doLoad()
        moi.hybrd_mesg = 0
        moi.State()
        moi.EvalEvar()
        moi.EvalCC()
        moicc = moicc=[0.01114694087227875000,0.07381787576415140000,\
0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,0.04329618737852313600,\
0.39140460844743269000,0.01114694087227862500,0.07381787576415056700,0.18139104475836440000,\
0.04685617079784004000,0.25208717198140518000,0.04329618737852265100,0.39140460844742830000,\
0.01114694087227874000,0.07381787576415133100,0.18139104475836623000,0.04685617079784051800,\
0.25208717198140773000,0.04329618737852309500,0.39140460844743230000,0.01114694087227875000,\
0.07381787576415140000,0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,\
0.04329618737852313600,0.39140460844743269000,0.01114694087227875000,0.07381787576415140000,\
0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,0.04329618737852313600,\
0.39140460844743269000,0.01114694087227876100,0.07381787576415146900,0.18139104475836659000,\
0.04685617079784060900,0.25208717198140823000,0.04329618737852317800,0.39140460844743302000,\
0.01114694087227875200,0.07381787576415141400,0.18139104475836645000,0.04685617079784057400,\
0.25208717198140806000,0.04329618737852314300,0.39140460844743280000,-0.96946517151898726000,\
0.07237057005414701500,0.17783461222620814000,0.04593748812318156800,0.24714464011293155000,\
0.04244730330314599300,0.38373055769937375000,-0.00493043463469603270,-0.03265059135931840800,\
-0.08023158100034956400,0.14913606725290945000,\
0.02650472034900546900,0.11529508789995771000,-0.17312326850750914000,-0.00258941341724495350,\
-0.01714775382110165000,-0.04213679882643606200,0.25950964810000904000,-0.07785637143685617000,\
-0.02885675558547331700,-0.09092255501289707400,-0.00651179467430067560,-0.04312275948862360300,\
-0.10596460973080281000,-0.02003169777867189200,0.40783108111031047000,-0.00355036168876400080,\
-0.22864985774914801000,-0.07520202175595115700,-0.49800690277268156000,1.11329060303376930000,\
0.28758054022385904000,1.54718927875470390000,0.26573108181778565000,-2.64058257930148920000,\
0.08511194652599511600,-0.37976718223865702000,-0.93319355560031703000,-0.24105862936563618000,\
-1.29690043219020780000,-0.22274375836758617000,2.98855161123640300000,-0.01413200623441426100,\
0.06305662607990611400,0.15494766227242857000,0.04002542759392844300,0.21533763168639128000,\
0.03698442240380646300,-0.49621976380204558000,0.01332315621836589900,0.08822932693215754200,\
0.21680398717628285000,-0.25121007495788511000,0.32322678367369212000,-0.85819164176559659000,\
0.46781846272298522000,0.01096817827331699600,0.07263406439629339900,0.17848209108569948000,\
0.03374050370795465800,-0.68693259335574453000,0.00598007183654026410,0.38512768405594056000,\
0.00513245176028354240,0.03398840011328187900,0.08351894906745090100,-0.51437161070192172000,\
0.15431837495286327000,0.05719670138973560700,0.18021673341830685000]
        moicc_new = []
        for x in range(moi.cc_all.shape[0]):
            for y in range(moi.cc_all.shape[1]):
                moicc_new.append(round(moi.cc_all[x, y], 2))
        for x in range(len(moicc)):
            moicc[x] = round(moicc[x], 2)
            #os.sys.stderr.write(str(moicc[x]) + ' --> ' + str(moicc_new[x])+'\n')
        assert_array_almost_equal(moicc, moicc_new)
Exemplo n.º 26
0
def load_data2d(file_name, mod=None, ltxe=None):
    """
    Loads a gzipped cPickle file containing a Data2D object. Optionally
    a model can be provided (which is useful when loading data that
    reference the same model. For the same reason a LatexExpr object
    can be supplied.
    """
    with gzip.open(file_name, 'rb') as f:
        data_2dobj = pickle.load(f)
    if not mod:
        data_2dobj.mod = pysces.model(data_2dobj.mod)
    else:
        data_2dobj.mod = mod
    if ltxe:
        del data_2dobj._ltxe
        data_2dobj._ltxe = ltxe
    return data_2dobj
Exemplo n.º 27
0
    def test_cc_moiety1(self):
        moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
        moi.doLoad()
        moi.hybrd_mesg = 0
        moi.State()
        moi.EvalEvar()
        moi.EvalCC()
        moicc = moicc=[0.01114694087227875000,0.07381787576415140000,\
0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,0.04329618737852313600,\
0.39140460844743269000,0.01114694087227862500,0.07381787576415056700,0.18139104475836440000,\
0.04685617079784004000,0.25208717198140518000,0.04329618737852265100,0.39140460844742830000,\
0.01114694087227874000,0.07381787576415133100,0.18139104475836623000,0.04685617079784051800,\
0.25208717198140773000,0.04329618737852309500,0.39140460844743230000,0.01114694087227875000,\
0.07381787576415140000,0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,\
0.04329618737852313600,0.39140460844743269000,0.01114694087227875000,0.07381787576415140000,\
0.18139104475836643000,0.04685617079784056700,0.25208717198140801000,0.04329618737852313600,\
0.39140460844743269000,0.01114694087227876100,0.07381787576415146900,0.18139104475836659000,\
0.04685617079784060900,0.25208717198140823000,0.04329618737852317800,0.39140460844743302000,\
0.01114694087227875200,0.07381787576415141400,0.18139104475836645000,0.04685617079784057400,\
0.25208717198140806000,0.04329618737852314300,0.39140460844743280000,-0.96946517151898726000,\
0.07237057005414701500,0.17783461222620814000,0.04593748812318156800,0.24714464011293155000,\
0.04244730330314599300,0.38373055769937375000,-0.00493043463469603270,-0.03265059135931840800,\
-0.08023158100034956400,0.14913606725290945000,\
0.02650472034900546900,0.11529508789995771000,-0.17312326850750914000,-0.00258941341724495350,\
-0.01714775382110165000,-0.04213679882643606200,0.25950964810000904000,-0.07785637143685617000,\
-0.02885675558547331700,-0.09092255501289707400,-0.00651179467430067560,-0.04312275948862360300,\
-0.10596460973080281000,-0.02003169777867189200,0.40783108111031047000,-0.00355036168876400080,\
-0.22864985774914801000,-0.07520202175595115700,-0.49800690277268156000,1.11329060303376930000,\
0.28758054022385904000,1.54718927875470390000,0.26573108181778565000,-2.64058257930148920000,\
0.08511194652599511600,-0.37976718223865702000,-0.93319355560031703000,-0.24105862936563618000,\
-1.29690043219020780000,-0.22274375836758617000,2.98855161123640300000,-0.01413200623441426100,\
0.06305662607990611400,0.15494766227242857000,0.04002542759392844300,0.21533763168639128000,\
0.03698442240380646300,-0.49621976380204558000,0.01332315621836589900,0.08822932693215754200,\
0.21680398717628285000,-0.25121007495788511000,0.32322678367369212000,-0.85819164176559659000,\
0.46781846272298522000,0.01096817827331699600,0.07263406439629339900,0.17848209108569948000,\
0.03374050370795465800,-0.68693259335574453000,0.00598007183654026410,0.38512768405594056000,\
0.00513245176028354240,0.03398840011328187900,0.08351894906745090100,-0.51437161070192172000,\
0.15431837495286327000,0.05719670138973560700,0.18021673341830685000]
        moicc_new = []
        for x in range(moi.cc_all.shape[0]):
            for y in range(moi.cc_all.shape[1]):
                moicc_new.append(round(moi.cc_all[x,y],2))
        for x in range(len(moicc)):
            moicc[x] = round(moicc[x],2)
            #os.sys.stderr.write(str(moicc[x]) + ' --> ' + str(moicc_new[x])+'\n')
        assert_array_almost_equal(moicc,moicc_new)
Exemplo n.º 28
0
    def test_elas_linear1(self):
        lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
        lin.doLoad()
        lin.hybrd_mesg = 0
        lin.State()
        lin.EvalEvar()
        line = [
            -0.30043348, 0., 0., 1.50216739, -0.50216739, 0., 0., 1.50650217,
            -0.50650217, 0., 0., 1.01300433
        ]
        line_new = []
        for x in range(lin.elas_var.shape[0]):
            for y in range(lin.elas_var.shape[1]):
                line_new.append(round(lin.elas_var[x, y], 2))
        for x in range(len(line)):
            line[x] = round(line[x], 2)

        assert_array_almost_equal(line, line_new)
Exemplo n.º 29
0
    def test_elas_branch1(self):
        bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
        bra.doLoad()
        bra.hybrd_mesg = 0
        bra.State()
        bra.EvalEvar()
        brae = [-0.66930781448548349, 0.0, 0.0, 0.0, 0.78845903183743249,\
-0.52920041809870422, 0.0, 0.0, 0.0, 0.95441603882382564,\
-0.60578219088834051, 0.0, 0.0, 0.95441603882382564, 0.0,\
-0.60578219088834051, 0.0, 0.0, 0.9421058792599355, 0.0, 0.0,\
0.0, 0.0, 0.9421058792599355]
        brae_new = []
        for x in range(bra.elas_var.shape[0]):
            for y in range(bra.elas_var.shape[1]):
                brae_new.append(round(bra.elas_var[x,y],2))
        for x in range(len(brae)):
            brae[x] = round(brae[x],2)
        assert_array_almost_equal(brae,brae_new)
Exemplo n.º 30
0
def load_model(fpath):
    cdir = os.getcwd()

    d, fname =  os.path.split(fpath)
    mod = pysces.model(fname, d)
    mod.Simulate()
    S = np.copy(mod.Nmatrix.array)
    pre = np.copy(S)
    pre[pre == 1] = 0
    pre[pre == -1] = 1

    places, transitions = mod.Nmatrix.getLabels()
    init = list(getattr(mod, place+"_init") for place in places)
    rate_getter = attrgetter("rate")
    rates = list(rate_getter(getattr(mod, transition)) for transition in transitions)
    os.chdir(cdir)
    return StochasticPetriNet._make([pre, np.array(init), S, np.array(rates),
                                    places, transitions])
Exemplo n.º 31
0
    def test_elas_branch1(self):
        bra = pysces.model('pysces_test_branch1.psc', self.model_dir)
        bra.doLoad()
        bra.hybrd_mesg = 0
        bra.State()
        bra.EvalEvar()
        brae = [-0.66930781448548349, 0.0, 0.0, 0.0, 0.78845903183743249,\
-0.52920041809870422, 0.0, 0.0, 0.0, 0.95441603882382564,\
-0.60578219088834051, 0.0, 0.0, 0.95441603882382564, 0.0,\
-0.60578219088834051, 0.0, 0.0, 0.9421058792599355, 0.0, 0.0,\
0.0, 0.0, 0.9421058792599355]
        brae_new = []
        for x in range(bra.elas_var.shape[0]):
            for y in range(bra.elas_var.shape[1]):
                brae_new.append(round(bra.elas_var[x, y], 2))
        for x in range(len(brae)):
            brae[x] = round(brae[x], 2)
        assert_array_almost_equal(brae, brae_new)
Exemplo n.º 32
0
 def test_cc_linear1(self):
     lin = pysces.model("pysces_test_linear1.psc", self.model_dir)
     lin.doLoad()
     lin.hybrd_mesg = 0
     lin.State()
     lin.EvalEvar()
     lin.EvalCC()
     lincc = [
         0.02564102564102570300,
         0.05128205128205126600,
         0.15384615384615383000,
         0.76923076923076916000,
         0.02564102564102571000,
         0.05128205128205128000,
         0.15384615384615385000,
         0.76923076923076938000,
         0.02564102564102571000,
         0.05128205128205128000,
         0.15384615384615385000,
         0.76923076923076938000,
         0.02564102564102570300,
         0.05128205128205126600,
         0.15384615384615383000,
         0.76923076923076916000,
         -0.30636428644396779000,
         -0.61272857288793536000,
         0.15318214322198387000,
         0.76591071610991934000,
         -0.08534676570192656400,
         -0.17069353140385327000,
         -0.51208059421155983000,
         0.76812089131733974000,
         -0.96185074526088343000,
         0.05062372343478333000,
         0.15187117030435002000,
         0.75935585152175000000,
     ]
     lincc_new = []
     for x in range(lin.cc_all.shape[0]):
         for y in range(lin.cc_all.shape[1]):
             lincc_new.append(round(lin.cc_all[x, y], 2))
     for x in range(len(lincc)):
         lincc[x] = round(lincc[x], 2)
     assert_array_almost_equal(lincc, lincc_new)
Exemplo n.º 33
0
 def P_INIT(self, *args):
     args = args[0]
     print 'Args', args
     self.RESULT = None
     self.setStatus('INITIALISING')
     client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
     client.connect((self.client_address[0], CFSERVE_PORT))
     client.send('GET')
     GO = True
     model = ''
     while GO:
         data = client.recv(self.block_size)
         model += data
         if data == '':
             GO = False
     self.model_name = args[0]
     self.model = pysces.model(self.model_name, loader="string", fString=model)
     if self.debug: print 'P_INIT ... ok.'
     self.setStatus('DONE_INITIALISE')
     return True
Exemplo n.º 34
0
 def P_INIT(self, *args):
     args = args[0]
     print 'Args', args
     self.RESULT = None
     self.setStatus('INITIALISING')
     client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
     client.connect((self.client_address[0], CFSERVE_PORT))
     client.send('GET')
     GO = True
     model = ''
     while GO:
         data = client.recv(self.block_size)
         model += data
         if data == '':
             GO = False
     self.model_name = args[0]
     self.model = pysces.model(self.model_name, loader="string", fString=model)
     if self.debug: print 'P_INIT ... ok.'
     self.setStatus('DONE_INITIALISE')
     return True
Exemplo n.º 35
0
def load_model(fpath):
    cdir = os.getcwd()

    d, fname = os.path.split(fpath)
    mod = pysces.model(fname, d)
    mod.Simulate()
    S = np.copy(mod.Nmatrix.array)
    pre = np.copy(S)
    pre[pre == 1] = 0
    pre[pre == -1] = 1

    places, transitions = mod.Nmatrix.getLabels()
    init = list(getattr(mod, place + "_init") for place in places)
    rate_getter = attrgetter("rate")
    rates = list(
        rate_getter(getattr(mod, transition)) for transition in transitions)
    os.chdir(cdir)
    return StochasticPetriNet._make(
        [pre, np.array(init), S,
         np.array(rates), places, transitions])
Exemplo n.º 36
0
def main ():

    # Check for file
    if len (sys.argv) < 2:
        s.write ("Error! Please supply a filename.\n")
        sys.exit (1)

    # Load model and convert to SBML
    m = pysces.model (sys.argv [1], dir=CWD)
    m.doLoad()
    sbml = pysces.interface.writeMod2SBML (m, getstrbuf=True).getvalue()

    # Output to 'model_' + current time + '.sbml'
    name = CWD + "/model_" + time.strftime ("%m%d%H%M%S") + ".sbml"
    out = open (name, 'w')
    out.write (sbml)
    out.flush ()
    out.close ()
    
    # Finished
    s.write ("Success! {} printed.\n".format (name))
Exemplo n.º 37
0
    def test_cc_linear1(self):
        lin = pysces.model('pysces_test_linear1.psc', self.model_dir)
        lin.doLoad()
        lin.hybrd_mesg = 0
        lin.State()
        lin.EvalEvar()
        lin.EvalCC()
        lincc=[0.02564102564102570300,0.05128205128205126600,\
0.15384615384615383000,0.76923076923076916000,0.02564102564102571000,0.05128205128205128000,\
0.15384615384615385000,0.76923076923076938000,0.02564102564102571000,0.05128205128205128000,\
0.15384615384615385000,0.76923076923076938000,0.02564102564102570300,0.05128205128205126600,\
0.15384615384615383000,0.76923076923076916000,-0.30636428644396779000,-0.61272857288793536000,\
0.15318214322198387000,0.76591071610991934000,-0.08534676570192656400,-0.17069353140385327000,\
-0.51208059421155983000,0.76812089131733974000,-0.96185074526088343000,0.05062372343478333000,\
0.15187117030435002000,0.75935585152175000000]
        lincc_new = []
        for x in range(lin.cc_all.shape[0]):
            for y in range(lin.cc_all.shape[1]):
                lincc_new.append(round(lin.cc_all[x, y], 2))
        for x in range(len(lincc)):
            lincc[x] = round(lincc[x], 2)
        assert_array_almost_equal(lincc, lincc_new)
Exemplo n.º 38
0
    def test_elas_moiety1(self):
        moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
        moi.doLoad()
        moi.hybrd_mesg = 0
        moi.State()
        moi.EvalEvar()
        moie = [1.4753672613878632,-0.47536726138786306,-0.47536726138786312,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.4278931518740323,0.0,\
1.4278931518740325,-0.42789315187403271,-0.42789315187403271,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0514524437327983,0.0,\
1.0514524437327983,-0.051452443732798468,0.0,0.0,0.0,0.0,\
0.0,-0.04300468618304179,0.0,1.0430046861830418,0.0,0.0,\
-0.043004686183041797,0.0,-0.073768363069393092,0.0,\
1.0737683630693931,0.0,0.0,0.0,0.0,0.0,1.0737683630693931,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.029048874655981143,\
1.0290488746559812,0.0,-0.029048874655981143,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,0.0, 1.0199985395848277]
        moie_new = []
        for x in range(moi.elas_var.shape[0]):
            for y in range(moi.elas_var.shape[1]):
                moie_new.append(round(moi.elas_var[x,y],2))
        for x in range(len(moie)):
            moie[x] = round(moie[x],2)
        assert_array_almost_equal(moie,moie_new)
Exemplo n.º 39
0
    def test_elas_moiety1(self):
        moi = pysces.model('pysces_test_moiety1.psc', self.model_dir)
        moi.doLoad()
        moi.hybrd_mesg = 0
        moi.State()
        moi.EvalEvar()
        moie = [1.4753672613878632,-0.47536726138786306,-0.47536726138786312,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.4278931518740323,0.0,\
1.4278931518740325,-0.42789315187403271,-0.42789315187403271,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0514524437327983,0.0,\
1.0514524437327983,-0.051452443732798468,0.0,0.0,0.0,0.0,\
0.0,-0.04300468618304179,0.0,1.0430046861830418,0.0,0.0,\
-0.043004686183041797,0.0,-0.073768363069393092,0.0,\
1.0737683630693931,0.0,0.0,0.0,0.0,0.0,1.0737683630693931,\
0.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.029048874655981143,\
1.0290488746559812,0.0,-0.029048874655981143,0.0,0.0,0.0,\
0.0,0.0,0.0,0.0,0.0,0.0, 1.0199985395848277]
        moie_new = []
        for x in range(moi.elas_var.shape[0]):
            for y in range(moi.elas_var.shape[1]):
                moie_new.append(round(moi.elas_var[x, y], 2))
        for x in range(len(moie)):
            moie[x] = round(moie[x], 2)
        assert_array_almost_equal(moie, moie_new)
Exemplo n.º 40
0
graphs generated will be both displayed and saved as PNG format files. 


NO WARRANTY OF FITNESS OF ANY KIND FOR ANYTHING ... SERIOUSLY!
(C) Brett G. Olivier Amsterdam 2011. All rights reserved
"""

# First we need to import PySCeS 0.8.0 or newer and store the current directory in CDIR
import os, time 
CDIR = os.path.dirname(os.path.abspath(os.sys.argv[0]))
import numpy, pysces

# Next we instantiate a PySCeS model object (load the input file from the current directory)
# and set the simulation endtime/endsteps. Note how in this input file we specify that this 
# model should be simulated stochastically and that the output should be displayed in amounts. 
mod = pysces.model('Burstmodel.psc', CDIR)
MODEL_NAME = 'Burstmodel'
ENDTIME = 100
ENDSTEPS = 10000

# First let's assume this model represents a determinisitic system and do a continuous 
# simulation to endtime with 2*endtime time points with LSODA or CVODE. 
mod.doSimPlot(ENDTIME, 2*ENDTIME)
# Save the results to a file using the PySCeS plotting library (pysces.plt.*)
pysces.plt.export('%s_par_set_1_deterministic' % MODEL_NAME, CDIR)

# Typical continuous result. Now let's assume this is a stochastic system and do a discrete 
# simulation to the same end time using the Direct method 
mod.doStochSim(end=ENDTIME, mode='time', method='Direct')
# we can plot the results with this function and save the results
mod.StochSimPlot()
Exemplo n.º 41
0
        outcomes[10][0][t])
    if QueueNTrajectories[-1,iteration] == 0:
    	QueueExtinction[iteration,0] = 1
    else:
    	QueueExtinction[iteration,0] = 0

for i in range(0,n_runs):
    print "CDI Queue Iteration %i of %i" % (i+1,n_runs)
    CDIQueueRun(CDIQueue,i)

numpy.savetxt('CDIQueueOutcomes.csv',QueueOutcomes,delimiter=','
,header="Incident,Recur,N",comments='')
numpy.savetxt('CDIQueueDTrajectories.csv',QueueDTrajectories,delimiter=','
,header="D",comments='')
numpy.savetxt('CDIQueueNTrajectories.csv',QueueNTrajectories,delimiter=','
,header="N",comments='')
numpy.savetxt('CDIQueueExtinction.csv',QueueExtinction,delimiter=',',header="Extinction",comments='')

print "C. difficile Queue Model - Runs Complete"

#######################
# Deterministic Model #
#######################

import pysces
detCDI = pysces.model('CDIpool.psc', dir=workingdir)
detCDI.doSim(end=end_time,points=end_time*10)
detTS = detCDI.data_sim.getSpecies()
detHead = "Time," + ','.join(detCDI.species)
os.chdir(workingdir)
numpy.savetxt('CDIDeterministic.csv',detTS,delimiter=',',header=detHead,comments='')
Exemplo n.º 42
0
        self.name = name
        self.value = value
        self.components = []

    def setComponent(self, comp):
        self.components.append(comp)
        setattr(self, comp.name, comp)

    def hasComponents(self):
        return MapList([a.name for a in self.components])



if __name__ == '__main__':
    import pysces
    M = pysces.model('pysces_model_linear1')
    M.doLoad()

    print '\nModel', M.ModelFile
    print '============='
    modmap = ModelMap(M)

    print 'Reactions\n', modmap.hasReactions()
    print 'Species\n', modmap.hasSpecies()
    print 'FixedSpecies\n', modmap.hasFixedSpecies()
    print ' '
    print 'R1 has reagents\n', modmap.R1.hasReagents()
    print 'R1 has sub\n', modmap.R1.hasSubstrates()
    print 'R1 has prod\n', modmap.R1.hasProducts()
    print 'R1 has mod\n', modmap.R1.hasModifiers()
    print ' '
Exemplo n.º 43
0
def run(dir_method,
        json_method,
        dir_model,
        json_model,
        dir_results,
        dir_solver,
        json_solver,
        dir_data=None,
        file_data=None,
        exp_sign='_exp_'):

    config_method = Config(os.path.join(dir_method, json_method))
    config_model = Config(os.path.join(dir_model, json_model))

    config_solver = Config(os.path.join(dir_solver, json_solver))

    # Experiment name
    exp_name = exp_sign + config_method.config['method_name'] + '_'

    # Load PySCES model
    mod = pysces.model(config_model.config['mod_name'], dir=dir_model)

    # Solver settings
    mod.__settings__["mode_sim_max_iter"] = config_solver.config[
        "mode_sim_max_iter"]
    mod.__settings__['lsoda_atol'] = config_solver.config['lsoda_atol']
    mod.__settings__['lsoda_rtol'] = config_solver.config['lsoda_rtol']
    mod.__settings__['lsoda_mxordn'] = config_solver.config['lsoda_mxordn']
    mod.__settings__['lsoda_mxords'] = config_solver.config['lsoda_mxords']
    mod.__settings__['lsoda_mxstep'] = config_solver.config['lsoda_mxstep']

    # =====REAL DATA PREPARATION=====
    # Remove fixed_species from params. We do it only once.
    params = remove_fixed(mod.parameters,
                          mod.fixed_species,
                          compartment=config_model.config['compartment'])

    if dir_data is not None:
        config_model.config['real_data'] = True
        mod.sim_start = config_model.config['sim_start']
        mod.sim_end = config_model.config['sim_end']
        mod.sim_points = config_model.config['sim_points']
        x_obs = np.load(os.path.join(dir_data, file_data))
    else:
        config_model.config['real_data'] = False
        x_obs, t = generate_data(mod,
                                 params,
                                 sim_start=config_model.config['sim_start'],
                                 sim_end=config_model.config['sim_end'],
                                 sim_points=config_model.config['sim_points'],
                                 noise=config_model.config['noise'])

        real_params = read_real_parameters(mod, params)
        real_params_array = dict_to_array(real_params, params)

        np.save(os.path.join(dir_results, exp_name + 'x_obs.npy'), x_obs)
        np.save(os.path.join(dir_results, exp_name + 't.npy'), t)
        np.save(os.path.join(dir_results, exp_name + 'real_params_array.npy'),
                real_params_array)

        json.dump(
            real_params,
            open(os.path.join(dir_results, exp_name + 'real_params.json'),
                 "w"))
        json.dump(
            params,
            open(os.path.join(dir_results, exp_name + 'params.json'), "w"))

    pickle.dump(mod, open(os.path.join(dir_results, exp_name + 'mod.pkl'),
                          "wb"))

    # =======EXPERIMENT=======
    # dump, just in case, configs
    pickle.dump(
        config_method.config,
        open(os.path.join(dir_results, exp_name + 'config_method.pkl'), "wb"))
    pickle.dump(
        config_model.config,
        open(os.path.join(dir_results, exp_name + 'config_model.pkl'), "wb"))

    # Init method
    # -get all classes in the file
    classes = [x for x in dir(EA) if isclass(getattr(EA, x))]
    # -check whether the provided name is available
    assert config_method.config[
        'method_name'] in classes, 'Wrong name of the method! Please pick one of the following methods: {}'.format(
            classes)

    # -initialize the appropriate class
    module = __import__("algorithms.population_optimization_algorithms",
                        fromlist=[config_method.config['method_name']])
    my_class = getattr(module, config_method.config['method_name'])
    method = my_class(config_method.config, config_model.config)

    # Init parameters
    theta = np.random.uniform(low=config_model.config['low'],
                              high=config_model.config['high'],
                              size=(config_method.config['pop_size'],
                                    len(params)))
    theta = np.clip(theta,
                    a_min=config_method.config['clip_min'],
                    a_max=config_method.config['clip_max'])
    # Calcute their energy
    E = calculate_fitness(x_obs,
                          theta,
                          mod,
                          params,
                          dist=method.dist,
                          config_model=config_model.config,
                          config_method=config_method.config)

    # -=Start experiment=-
    best_E = [np.min(E)]

    all_E = E
    all_theta = theta

    clock_start = time.time()
    print('START ~~~~~~>')
    g = config_method.config['generations']
    for i in range(g):
        print(f'========> Generation {i+1}/{g}')
        theta, E = method.step(theta, E, x_obs, mod, params)
        if np.min(E) < best_E[-1]:
            best_E.append(np.min(E))
        else:
            best_E.append(best_E[-1])

        all_theta = np.concatenate((all_theta, theta), 0)
        all_E = np.concatenate((all_E, E), 0)
        # SAVING
        np.save(os.path.join(dir_results, exp_name + 'all_theta.npy'),
                all_theta)
        np.save(os.path.join(dir_results, exp_name + 'all_E.npy'), all_E)
        np.save(os.path.join(dir_results, exp_name + 'best_E.npy'),
                np.asarray(best_E))

        # early stopping
        if i > config_method.config['patience']:
            if best_E[-config_method.config['patience']] == best_E[-1]:
                break
    print('~~~~~~> END')
    clock_stop = time.time()
    print('Time elapsed: {}'.format(clock_stop - clock_start))
    np.save(os.path.join(dir_results, exp_name + 'time.npy'),
            np.asarray(clock_stop - clock_start))
Exemplo n.º 44
0
#!/usr/bin/env python
# Testing the new parallel scanner class

import os

backupdir = os.getcwd()

import numpy as np
import pysces

tbox = pysces.PyscesUtils.TimerBox()
import time

m = pysces.model('isola2a')

print("\n\nParallel execution...using RunScatter")
par2 = pysces.ParScanner(m, engine='ipcluster')
t5 = time.time()
par2.addScanParameter('V4', 60, 100, 11)
par2.addScanParameter('V1', 100, 130, 16)
par2.addScanParameter('V2', 100, 130, 16, follower=True)
par2.addScanParameter('V3', 80, 90, 6)
par2.addUserOutput('J_R1', 'A', 'ecR4_X', 'ccJR1_R1')
# par2.addUserOutput('J_R1', 'A')
par2.RunScatter()
t6 = time.time()
print("Duration: %.2f seconds" % (t6 - t5))
par2.statespersecond = par2.Tsteps / (t6 - t5)
print("States per second: %.1f" % par2.statespersecond)

os.chdir(backupdir)
Exemplo n.º 45
0
#!/usr/bin/env python

import os
dir = os.getcwd()
import numpy as np
import matplotlib.pyplot as plt
import pysces

models = [("PT test", "Wajima2009_PTtest.xml", 0, 7), \
    ("aPTT test", "Wajima2009_aPTTtest.xml", 2, 6)]
figure = "Wajima2009_tests.png"

for model in models:
    pysces.PyscesInterfaces.Core2interfaces().convertSBML2PSC(sbmlfile=model[1], sbmldir=dir, pscfile=model[1], pscdir=dir)
    mod = pysces.model(model[1], dir=dir)
    os.chdir(dir)
    
    mod.doSim(end=0.025, points=500)
    x = mod.data_sim.getSpecies()
    x[0] = x[1] # we don't want pre-dilution concentration in the time course plot
    x[0,-1] = 0 # start the time at 0
    x = x.transpose()
    
    data = lambda name: x[mod.data_sim.species_labels.index(name)+1]
    time = mod.data_sim.getTime() * 3600 # we want seconds here, not hours
    plot = lambda species, norm: plt.plot(time, data(species)/max(data(norm))*100)
    
    plt.subplot(221 + model[2]) # rows, cols, num
    pdict = {"Fg":"F", "II":"IIa", "X":"Xa"}
    for key in pdict.keys():
        plot(pdict[key], key)
Exemplo n.º 46
0
def getPyscesModel():
    A = tc_allItems();
    N = fromMatrix( tc_getStoichiometry(A), True );
    rates0 = fromTC( tc_getRates(A) );
    params = fromTC( tc_getParameters(A) );
    fixed = fromTC( tc_getFixedVariables(A) );
    inits = fromTC( tc_getInitialValues(A) );
    funcsNames = fromTC( tc_getForcingFunctionNames(A) );
    funcsAssign0 = fromTC( tc_getForcingFunctionAssignments(A) );
    triggers = fromTC(  tc_getEventTriggers() );
    events0 = fromTC( tc_getEventResponses() );
    #tc_deleteItemsArray(A);
    emptyExists = False;
    modelString = '';
    rates = [];
    funcsAssign = [];
    events = [];

    p = re.compile('\^');
    for i in rates0:
        rates.append(p.sub('**',i));

    for i in funcsAssign0:
        funcsAssign.append(p.sub('**',i));

    for i in events0:
        events.append(p.sub('**',i));

    reacs = len(rates);
    species = len(N[0]);

    for i in range(0,reacs):   #for each reaction
        lhs = [];
        rhs = [];
        for j in range(0,species):  #get reactants and products
            n = N[2][j][i];
            if n > 0:
                if n != 1.0:
                    rhs.append("{" + str(n) + "}" + str(N[0][j])); #product
                else:
                    rhs.append(str(N[0][j]));
            elif n < 0:
                n = -n;
                if n != 1.0:
                    lhs.append("{" + str(n) + "}" + str(N[0][j])); #reactants
                else:
                    lhs.append(str(N[0][j]));
    #full reaction and its rate
        if len(lhs) > 0 or len(rhs) > 0:
            modelString += N[1][i] + ":\n"; #print its name
            if len(lhs) == 0:
                lhs.append("EMPTY");
                emptyExists = True;
            if len(rhs) == 0:
                rhs.append("EMPTY");
                emptyExists = True;
            modelString += "  " + "+".join(lhs) + " > " + "+".join(rhs) + "\n"; 
            modelString += "  " + rates[i] + "\n\n";

    #we are done with reactions. moving on to params, events, functions, etc.
    fix = '';

    if emptyExists:
        fix = "FIX: EMPTY";

    n = len(fixed[0]);
    if n > 0 and len(fixed[0]) == len(fixed[2][0]):
        if not emptyExists:
            fix += "FIX:";
        for i in range(0,n):
            fix += " " + fixed[0][0][i];

    modelString = fix + "\n\n" + modelString;

    modelString += "# Init ext\n";

    #fixed variables
    if n > 0 and len(fixed[0]) == len(fixed[2][0]):
        for i in range(0,n):
            modelString += fixed[0][i] + " = " + str(fixed[2][0][i]) + "\n";

    #initial variables
    hashInits = {};
    n = len(inits[0]);
    if n > 0 and len(inits[0]) == len(inits[2][0]):
        modelString += "\n# Init vars\n";    
        for i in range(0,n):
            hashInits[ inits[0][i] ] = inits[2][0][i];
            modelString += inits[0][i] + " = " + str(inits[2][0][i]) + "\n";

    for j in N[0]:
        if not hashInits.has_key(j):
            modelString += j + " = 0.0\n";

    #parameters -- remove unused parameters
    n = len(params[0]);
    if n > 0 and len(params[0]) == len(params[2][0]):
        modelString += "\n# Init params\n";
        for i in range(0,n):  #for each parameter
            modelString += params[0][i] + " = " + str(params[2][0][i]) + "\n";

    n = len(funcsNames);
    if n > 0 and len(funcsNames) == len(funcsAssign):
        modelString += "\n# Forcing functions\n";
        for i in range(0,n):
            modelString += "!F " + funcsNames[i] + " = " + funcsAssign[i] + "\n";
            
    n = len(triggers);
    if n > 0 and len(triggers) == len(events):
        modelString += "\n# Events\n";
        for i in range(0,n):
            modelString += "Event: event" + str(i) + "," + triggers[i] + " , 0 {" + events[i] + "}\n";

    p = re.compile("\^");
    p.sub("**",modelString);
    #return modelString;

    mod = pysces.model("model",loader="string",fString=modelString);
    mod.doLoad();  
    return mod;
Exemplo n.º 47
0
    QueueMedian[iteration,1] = numpy.median(QueuePredator[:,iteration])
    QueueMedian[iteration,2] = numpy.median(QueueTotal[:,iteration])
    QueueMean[iteration,0] = numpy.mean(QueuePrey[:,iteration])
    QueueMean[iteration,1] = numpy.mean(QueuePredator[:,iteration])
    QueueMean[iteration,2] = numpy.mean(QueueTotal[:,iteration])

for i in range(0,n_runs):
	LVQueueRun(LVqueue,i)
	print "LV Queue Iteration %i of %i" % (i+1,n_runs)

numpy.savetxt('QueuePrey.csv',QueuePrey,delimiter=',',header="Prey",comments='')
numpy.savetxt('QueuePredator.csv',QueuePredator,delimiter=',',header="Predator",comments='')
numpy.savetxt('QueueTotal.csv',QueueTotal,delimiter=',',header="TotalN",comments='')
numpy.savetxt('LVqueueExtinction.csv',QueueExtinction,delimiter=',',header="Prey,Predator,N",comments='')
numpy.savetxt('LVqueueMedian.csv',QueueMedian,delimiter=',', header="Prey,Predator,N",comments='')
numpy.savetxt('LVqueueMean.csv',QueueMean,delimiter=',',header="Prey,Predator,N",comments='')

print "LV Queue Model - Runs Complete"

#######################
# Deterministic Model #
#######################

import pysces
detLV = pysces.model('LVpool.psc', dir=workingdir)
detLV.doSim(end=end_time,points=end_time*10)
detLVTS = detLV.data_sim.getSpecies()
detLVHead = "Time," + ','.join(detLV.species)
os.chdir(workingdir)
numpy.savetxt('LVDeterministic.csv',detLVTS,delimiter=',',header=detLVHead,comments='')
Exemplo n.º 48
0
    def __init__(self, name, value=None):
        self.name = name
        self.value = value
        self.components = []

    def setComponent(self, comp):
        self.components.append(comp)
        setattr(self, comp.name, comp)

    def hasComponents(self):
        return MapList([a.name for a in self.components])


if __name__ == '__main__':
    import pysces
    M = pysces.model('pysces_model_linear1')
    M.doLoad()

    print '\nModel', M.ModelFile
    print '============='
    modmap = ModelMap(M)

    print 'Reactions\n', modmap.hasReactions()
    print 'Species\n', modmap.hasSpecies()
    print 'FixedSpecies\n', modmap.hasFixedSpecies()
    print ' '
    print 'R1 has reagents\n', modmap.R1.hasReagents()
    print 'R1 has sub\n', modmap.R1.hasSubstrates()
    print 'R1 has prod\n', modmap.R1.hasProducts()
    print 'R1 has mod\n', modmap.R1.hasModifiers()
    print ' '
Exemplo n.º 49
0
#!/usr/bin/env python

# Simulation D'alcantara with pysces

import pysces
#mod = pysces.model('/home/mattions/Work/model/diff_eq/Fernandez/BIOMD0000000152.xml')
mod = pysces.model('/home/mattions/Work/model/diff_eq/Dalcantara_model/dAlcantara2003.xml')
mod.doLoad()
mod.doSimPlot(end=600.00)
Exemplo n.º 50
0
#!/usr/bin/env python
# Testing the new parallel scanner class

import os
backupdir = os.getcwd()

import numpy as np
import pysces

tbox=pysces.PyscesUtils.TimerBox()
import time

m=pysces.model('isola2a')

ser = pysces.Scanner(m)

print("Serial execution...")
print("Start: ", tbox.normal_timer('SER'))
print(next(tbox.SER))
t1=time.time()
ser.quietRun = True
ser.addScanParameter('V4',60,100,11)
ser.addScanParameter('V1',100,160,16)
ser.addScanParameter('V2',100,130,16,slave=True)
ser.addScanParameter('V3',80,90,6)
ser.addUserOutput('J_R1', 'A', 'ecR4_X','ccJR1_R1')
#ser.addUserOutput('J_R1', 'A')
ser.Run()
print("Done: ", next(tbox.SER))
t2=time.time()
print("Duration: %.2f seconds" % (t2-t1))
Exemplo n.º 51
0
graphs generated will be both displayed and saved as PNG format files. 


NO WARRANTY OF FITNESS OF ANY KIND FOR ANYTHING ... SERIOUSLY!
(C) Brett G. Olivier Amsterdam 2011. All rights reserved
"""

# First we need to import PySCeS 0.8.0 or newer and store the current directory in CDIR
import os, time
CDIR = os.path.dirname(os.path.abspath(os.sys.argv[0]))
import numpy, pysces

# Next we instantiate a PySCeS model object (load the input file from the current directory)
# and set the simulation endtime/endsteps. Note how in this input file we specify that this
# model should be simulated stochastically and that the output should be displayed in amounts.
mod = pysces.model('Burstmodel.psc', CDIR)
MODEL_NAME = 'Burstmodel'
ENDTIME = 100
ENDSTEPS = 10000

# First let's assume this model represents a determinisitic system and do a continuous
# simulation to endtime with 2*endtime time points with LSODA or CVODE.
mod.doSimPlot(ENDTIME, 2 * ENDTIME)
# Save the results to a file using the PySCeS plotting library (pysces.plt.*)
pysces.plt.export('%s_par_set_1_deterministic' % MODEL_NAME, CDIR)

# Typical continuous result. Now let's assume this is a stochastic system and do a discrete
# simulation to the same end time using the Direct method
mod.doStochSim(end=ENDTIME, mode='time', method='Direct')
# we can plot the results with this function and save the results
mod.StochSimPlot()
Exemplo n.º 52
0
        self.name = name
        self.value = value
        self.components = []

    def setComponent(self, comp):
        self.components.append(comp)
        setattr(self, comp.name, comp)

    def hasComponents(self):
        return MapList([a.name for a in self.components])


if __name__ == "__main__":
    import pysces

    M = pysces.model("pysces_model_linear1")
    M.doLoad()

    print "\nModel", M.ModelFile
    print "============="
    modmap = ModelMap(M)

    print "Reactions\n", modmap.hasReactions()
    print "Species\n", modmap.hasSpecies()
    print "FixedSpecies\n", modmap.hasFixedSpecies()
    print " "
    print "R1 has reagents\n", modmap.R1.hasReagents()
    print "R1 has sub\n", modmap.R1.hasSubstrates()
    print "R1 has prod\n", modmap.R1.hasProducts()
    print "R1 has mod\n", modmap.R1.hasModifiers()
    print " "
Exemplo n.º 53
0
        S = self.pcMod.data_sim.getSpecies()[:, 1:]
        #        print 'called!'
        return S

if __name__ == "__main__":
    #nr samples to generate
    N = 10000
    burn = 5000
    thin = 5

    force = False
    fname = 'testLogInverseModel1.pkl'

    #initialize the pysces model
    pcMod = pysces.model('pysces_test_linear2')
    pcMod.sim_end = 5
    pcMod.sim_points = 60

    #initialize "data"
    pcMod.Simulate()
    D = pcMod.data_sim.getSpecies()[:, 1:]
    D += sigmaExp * randn(D.shape[0], D.shape[1])

    #get initial parameters
    nK = 0
    for p in pcMod.parameters:
        if p[0] == 'k':
            nK += 1
    k0 = zeros(nK)
    for p in pcMod.parameters:
Exemplo n.º 54
0
def bounceSpecies(S, fname='speciesBounce.spc'):
    with open(fname, 'w') as f:
        for i, s in enumerate(S):
            f.write('s%d = %.3e\n' % (i + 1, s[-1]))


def spc(pcMod):
    return pcMod.data_sim.getSpecies()[:, 1:].T


if __name__ == '__main__':
    #-------------------------------------------------------
    #             initialize the pysces model
    #-------------------------------------------------------
    modName = 'R-ERK_s.psc'
    pcMod = pysces.model(modName)
    pcMod.__settings__["lsoda_mxstep"] = 2000
    #    pcMod.sim_end = 5e2
    #    pcMod.Simulate()
    #    bounceSpecies(spc(pcMod))
    #    pcMod.__settings__['mode_sim_init'] = 3
    pcMod.sim_end = 1e5
    pcMod.sim_points = 200

    idxDic, nmDic, sDic = loadSpeciesDict(modName[:-4] +
                                          '_speciesDictionary.txt')
    #-------------------------------------------------------

    #u,sv,vh = linalg.svd(pcMod.nmatrix)
    #figure()
    #plot(sv)
Exemplo n.º 55
0
def playgame(currentdir,stochastic,parameter1,parameter2):
    #parameter 1 determines final level
    #parameter 2 determines
    #type should be 0 or 1 -> toggle between stochastic and deterministic
    if stochastic:
        #stochastic
        #change directory
        
        smod = stochpy.SSA()
        smod.Model(os.path.join(currentdir, 'mRNAproteinIulia.psc'))

        #change parameters
        smod.ChangeParameter("Ksynmrna",parameter1)
        smod.ChangeParameter("Kdeg2",parameter2)
        #smod.ChangeInitialSpeciesCopyNumber("Kdeg1",parameter2)
        
        #smod.data_stochsim.simulation_endtime
        #smod.data_stochsim.simulation_timesteps = 51.0
        smod.Timesteps(50)
        smod.Endtime(50)
        smod.DoStochSim(end=50)
        
        #Only plot as a test
        #smod.PlotSpeciesTimeSeries()
        #pysces.plt.setAxisLabel('x', label='time')
        #pysces.plt.setAxisLabel('y', label='expression levels')
        #plt.savefig(currentdir+'/stoch.png')
        
        simvalues_stoch = smod.data_stochsim.getSpecies()
        x_values = range(5,51,5)
        
        #arrange results
        time_val = []
        mRNA_val = []
        protein_val =[]
        for list in simvalues_stoch:
            time_val.append(list[0])
            mRNA_val.append(list[1])
            protein_val.append(list[2])
        time_val_rounded = []
        for i in time_val:
            time_val_rounded.append(int(round(i)))
        count = 0
        mRNA_final = []
        protein_final = []
        for val in range(0,len(mRNA_val)-1):
            mRNA_final.append([mRNA_val[val]] * ((time_val_rounded[count+1] - time_val_rounded[count])))
            protein_final.append([protein_val[val]] * ((time_val_rounded[count+1] - time_val_rounded[count])))
            count = count + 1
        time_final = range(1,51)
        mRNA_final = flatten(mRNA_final)
        protein_final = flatten(protein_final)
        simvalues = zip(time_final,mRNA_final,protein_final)

    else:
        #deterministic
        print(currentdir+'pysces_determ.psc')
        mod = pysces.model('pysces_determ', dir=os.getcwd())
        #change params
        mod.Ksynmrna = parameter1
        mod.Kdeg2 = parameter2
        mod.doSim(end=50.0, points=50.0)
        mod.Simulate()
        #print os.getcwd(), '\n\n\n'
        #mod.doSimPlot()
        
        #plot here to check it works but don't actually plot
        mod.sim_start = 1.0
        mod.doSimPlot(end=50.0, points=51, plot='species', fmt='lines', filename=None)
        #pysces.plt.p_activateInterface('matplotlib')
        #pysces.plt.setAxisLabel('x', label='time')
        #pysces.plt.setAxisLabel('y', label='expression levels')
        #plt.savefig(currentdir+'/simpledeterm.png')
        #plt.close()

        #get simulation values
        simvalues = mod.data_sim.getSpecies()
#       print(mod.data_sim.getSpecies())

    os.chdir(currentdir)
    with open("simvalues.csv","wb") as f:
        writer = csv.writer(f)
        writer.writerows(simvalues)

    return simvalues
Exemplo n.º 56
0
model_file = 'BIOMD0000000860.xml'

# environment
import os
cDir = os.path.dirname(os.path.abspath(os.sys.argv[0]))
import pysces
import numpy as np
import pickle

model_dir = os.path.join(cDir, 'models')
out_dir = os.path.join(cDir, 'out', model_file)
data_dir = os.path.join(cDir, 'ref_data', model_file)

if not os.path.exists(out_dir):
    os.makedirs(out_dir)
pysces.output_dir = out_dir

# code
pysces.interface.convertSBML2PSC(model_file, sbmldir=model_dir, pscdir=out_dir)

mod = pysces.model(model_file + '.psc', dir=out_dir)
mod.doSim(4 * 3600, 4 * 3600 + 1)
mod.SimPlot()
pysces.plt.export(model_file, directory=out_dir, outtype='png')

ref_sim_data = pickle.load(open(data_dir + '/simdata.pkl', 'rb'))
assert np.allclose(mod.data_sim.getAllSimData(), ref_sim_data), \
    "Data doesn't match reference!"

print('\nOutput path: \"{}\"\n\nDone.\n'.format(out_dir))
Exemplo n.º 57
0
Arquivo: main.py Projeto: justi/Ipys
 def __load_sbml__(self):
     psc_file_name = self.sbml_file_name + ".psc"
     pysces.interface.convertSBML2PSC(self.sbml_file_name)
     self.pyscesModel = pysces.model(psc_file_name)
     self.pyscesModel.doLoad()
Exemplo n.º 58
0
def run(mod_name='wolf1',
        sim_start=0.0,
        sim_end=30.,
        sim_points=30,
        exp_sign='exp_1_',
        method_name='DE',
        generations=5,
        pop_size=500,
        clip_min=0.,
        clip_max=15.,
        a=-100.,
        b=100.,
        scale=1.,
        p=-1.,
        std=0.1,
        gamma=0.75,
        CR=0.9,
        best=False,
        dist_name='truncnorm',
        low=0.,
        high=100.,
        indices=None,
        compartment=True,
        patience=100,
        noise=0.1,
        dir_model='C:\\Dev\\github\\abcde\\',
        slash='\\'):

    # Experiment name
    exp_name = exp_sign + method_name + '_'

    # Load PySCES model
    mod = pysces.model(mod_name, dir=dir_model)

    # Solver settings
    mod.__settings__["mode_sim_max_iter"] = 0
    mod.__settings__['lsoda_atol'] = 1.0e-012
    mod.__settings__['lsoda_rtol'] = 1.0e-007
    mod.__settings__['lsoda_mxordn'] = 12
    mod.__settings__['lsoda_mxords'] = 5
    mod.__settings__['lsoda_mxstep'] = 0

    # =====REAL DATA PREPARATION=====
    # Remove fixed_species from params. Do it only once
    params = remove_fixed(mod.parameters,
                          mod.fixed_species,
                          compartment=compartment)

    x_obs, t = generate_data(mod,
                             params,
                             sim_start=sim_start,
                             sim_end=sim_end,
                             sim_points=sim_points,
                             noise=noise)

    real_params = read_real_parameters(mod, params)
    real_params_array = dict_to_array(real_params, params)

    np.save(dir_model + 'results' + slash + exp_name + 'x_obs.npy', x_obs)
    np.save(dir_model + 'results' + slash + exp_name + 't.npy', t)
    np.save(dir_model + 'results' + slash + exp_name + 'real_params_array.npy',
            real_params_array)

    json.dump(
        real_params,
        open(dir_model + 'results' + slash + exp_name + 'real_params.json',
             "w"))
    json.dump(
        params,
        open(dir_model + 'results' + slash + exp_name + 'params.json', "w"))

    pickle.dump(
        mod, open(dir_model + 'results' + slash + exp_name + 'mod.pkl', "wb"))

    # =======EXPERIMENT=======
    # config
    conf = Config(method_name=method_name,
                  generations=generations,
                  pop_size=pop_size,
                  clip_min=clip_min,
                  clip_max=clip_max,
                  a=a,
                  b=b,
                  scale=scale,
                  p=p,
                  std=std,
                  gamma=gamma,
                  CR=CR,
                  best=best,
                  dist_name=dist_name,
                  indices=indices,
                  patience=patience)

    pickle.dump(
        conf.config,
        open(dir_model + 'results' + slash + exp_name + 'config.pkl', "wb"))

    # Init method
    if method_name in ['DE']:
        method = DE(conf.config)
    elif method_name in ['RevDE']:
        method = RevDE(conf.config)
    elif method_name in ['ES']:
        method = ES(conf.config)
    elif method_name in ['EDA']:
        method = EDA(conf.config)
    elif method_name in ['RevDEknn']:
        method = RevDEknn(conf.config)
    elif method_name in ['EDAknn']:
        method = RevDEknn(conf.config)
    else:
        raise ValueError('Wrong method! Only DE, ABC_DE and ABC_MH.')

    # Init parameters
    theta = np.random.uniform(low=low,
                              high=high,
                              size=(conf.config['pop_size'], len(params)))
    theta = np.clip(theta,
                    a_min=conf.config['clip_min'],
                    a_max=conf.config['clip_max'])
    # Calcute their energy
    E = calculate_fitness(x_obs,
                          theta,
                          mod,
                          params,
                          dist=method.dist,
                          conf=conf.config)

    # Start experiment
    best_E = [np.min(E)]

    all_E = E
    all_theta = theta

    clock_start = time.time()
    print('START ~~~~~~>')
    g = conf.config['generations']
    for i in range(conf.config['generations']):
        print(f'========> Generation {i+1}/{g}')
        theta, E = method.step(theta, E, x_obs, mod, params)
        if np.min(E) < best_E[-1]:
            best_E.append(np.min(E))
        else:
            best_E.append(best_E[-1])

        all_theta = np.concatenate((all_theta, theta), 0)
        all_E = np.concatenate((all_E, E), 0)
        # SAVING
        np.save(dir_model + 'results' + slash + exp_name + 'all_theta.npy',
                all_theta)
        np.save(dir_model + 'results' + slash + exp_name + 'all_E.npy', all_E)
        np.save(dir_model + 'results' + slash + exp_name + 'best_E.npy',
                np.asarray(best_E))

        # early stopping
        if i > patience:
            if best_E[-patience] == best_E[-1]:
                break
    print('~~~~~~> END')
    clock_stop = time.time()
    print('Time elapsed: {}'.format(clock_stop - clock_start))
    np.save(dir_model + 'results' + slash + exp_name + 'time.npy',
            np.asarray(clock_stop - clock_start))