Exemplo n.º 1
0
def localize(mol, mf, method):
  if (method == "lowdin"):
    return fractional_matrix_power(mf.get_ovlp(mol), -0.5).T
  elif (method == "pm"):
    return pipek.PM(mol).kernel(mf.mo_coeff)
  elif (method == "pmLowdin"):
    lowdin = fractional_matrix_power(mf.get_ovlp(mol), -0.5).T
    return pipek.PM(mol).kernel(lowdin)
  elif (method == "boys"):
    return boys.Boys(mol).kernel(mf.mo_coeff)
Exemplo n.º 2
0
def PipekMezey(mol, orbocc, iaos=None, s=None, exponent=EXPONENT):
    '''
    Note this localization is slightly different to Knizia's implementation.
    The localization here reserves orthogonormality during optimization.
    Orbitals are projected to IAO basis first and the Mulliken pop is
    calculated based on IAO basis (in function atomic_pops).  A series of
    unitary matrices are generated and applied on the input orbitals.  The
    intemdiate orbitals in the optimization and the finally localized orbitals
    are all orthogonormal.

    Examples:

    >>> from pyscf import gto, scf
    >>> from pyscf.lo import ibo
    >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', >>> basis='unc-sto3g')
    >>> mf = scf.RHF(mol).run()
    >>> pm = ibo.PM(mol, mf.mo_coeff[:,mf.mo_occ>0])
    >>> loc_orb = pm.kernel()
    '''
    if hasattr(mol, 'pbc_intor'):  # whether mol object is a cell
        if isinstance(orbocc, numpy.ndarray) and orbocc.ndim == 2:
            s = mol.pbc_intor('int1e_ovlp', hermi=1)
        else:
            raise NotImplementedError('k-points crystal orbitals')
    else:
        s = mol.intor_symmetric('int1e_ovlp')

    if iaos is None:
        iaos = iao.iao(mol, orbocc)

    # Different to Knizia's code, the reference IAOs are not neccessary
    # orthogonal.
    #iaos = orth.vec_lowdin(iaos, s)

    cs = numpy.dot(iaos.T.conj(), s)
    s_iao = numpy.dot(cs, iaos)
    iao_inv = numpy.linalg.solve(s_iao, cs)
    iao_mol = iao.reference_mol(mol)

    # Define the mulliken population of each atom based on IAO basis.
    # proj[i].trace is the mulliken population of atom i.
    def atomic_pops(mol, mo_coeff, method=None):
        nmo = mo_coeff.shape[1]
        proj = numpy.empty((mol.natm, nmo, nmo))
        orb_in_iao = reduce(numpy.dot, (iao_inv, mo_coeff))
        for i, (b0, b1, p0, p1) in enumerate(iao_mol.offset_nr_by_atom()):
            csc = reduce(numpy.dot,
                         (orb_in_iao[p0:p1].T, s_iao[p0:p1], orb_in_iao))
            proj[i] = (csc + csc.T) * .5
        return proj

    pm = pipek.PM(mol, orbocc)
    pm.atomic_pops = atomic_pops
    pm.exponent = exponent
    return pm
Exemplo n.º 3
0
def localizeAllElectron(mf, method="lowdin"):
    if (method == "lowdin"):
        return fractional_matrix_power(mf.get_ovlp(), -0.5).T
    elif (method == "pm"):
        return pipek.PM(mf.mol).kernel(mf.mo_coeff)
    elif (method == "boys"):
        return boys.Boys(mf.mol).kernel(mf.mo_coeff)
    elif (method == "er"):
        return edmiston.ER(mf.mol).kernel(mf.mo_coeff)
    elif (method == "iao"):
        return iao.iao(mf.mol, mf.mo_coeff)
    elif (method == "ibo"):
        a = iao.iao(mf.mol, mf.mo_coeff)
        a = lo.vec_lowdin(a, mf.get_ovlp())
        return ibo.ibo(mf.mol, mf.mo_coeff, iaos=a)
Exemplo n.º 4
0
Arquivo: ibo.py Projeto: zzy2014/pyscf
def PipekMezey(mol, orbocc, iaos, s, exponent):
    '''
    Note this localization is slightly different to Knizia's implementation.
    The localization here reserves orthogonormality during optimization.
    Orbitals are projected to IAO basis first and the Mulliken pop is
    calculated based on IAO basis (in function atomic_pops).  A series of
    unitary matrices are generated and applied on the input orbitals.  The
    intemdiate orbitals in the optimization and the finally localized orbitals
    are all orthogonormal.

    Examples:

    >>> from pyscf import gto, scf
    >>> from pyscf.lo import ibo
    >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', >>> basis='unc-sto3g')
    >>> mf = scf.RHF(mol).run()
    >>> pm = ibo.PM(mol, mf.mo_coeff[:,mf.mo_occ>0])
    >>> loc_orb = pm.kernel()
    '''

    # Note: PM with Lowdin-orth IAOs is implemented in pipek.PM class
    # TODO: Merge the implemenation here to pipek.PM

    MINAO = getattr(__config__, 'lo_iao_minao', 'minao')
    cs = numpy.dot(iaos.T.conj(), s)
    s_iao = numpy.dot(cs, iaos)
    iao_inv = numpy.linalg.solve(s_iao, cs)
    iao_mol = iao.reference_mol(mol, minao=MINAO)

    # Define the mulliken population of each atom based on IAO basis.
    # proj[i].trace is the mulliken population of atom i.
    def atomic_pops(mol, mo_coeff, method=None):
        nmo = mo_coeff.shape[1]
        proj = numpy.empty((mol.natm, nmo, nmo))
        orb_in_iao = reduce(numpy.dot, (iao_inv, mo_coeff))
        for i, (b0, b1, p0, p1) in enumerate(iao_mol.offset_nr_by_atom()):
            csc = reduce(numpy.dot,
                         (orb_in_iao[p0:p1].T, s_iao[p0:p1], orb_in_iao))
            proj[i] = (csc + csc.T) * .5
        return proj

    pm = pipek.PM(mol, orbocc)
    pm.atomic_pops = atomic_pops
    pm.exponent = exponent
    return pm
Exemplo n.º 5
0
n = 10
order = 2
sqrt2 = 2**0.5

atomstring = ""
for i in range(n):
    atomstring += "H 0 0 %g\n" % (i * r)

mol = gto.M(atom=atomstring, basis='ccpvdz', verbose=4, symmetry=0, spin=0)
mf = scf.RHF(mol)
print mf.kernel()

mocoeff = mf.mo_coeff

lowdin = fractional_matrix_power(mf.get_ovlp(mol), -0.5).T
pm = pipek.PM(mol).kernel(lowdin)
lmo = np.full((50, 50), 0.)
orth = ortho_group.rvs(dim=5)
for i in range(10):
    lmo[::, 5 * i:5 * (i + 1)] = pm[::, 5 * i:5 * (i + 1)].dot(orth)

norb = mf.mo_coeff.shape[0]
h1 = lmo.T.dot(mf.get_hcore()).dot(lmo)
eri = ao2mo.kernel(mol, lmo)
tools.fcidump.from_integrals('FCIDUMP', h1, eri, norb, n, mf.energy_nuc())

print mf.mo_coeff
print "local"
print lmo

#print the atom with which the lmo is associated
Exemplo n.º 6
0
atomstring = ""
for i in range(n):
    atomstring += "H 0 0 %g\n" % (i * r)

mol = gto.M(atom=atomstring, basis='sto-6g', verbose=4, symmetry=0, spin=0)
myhf = scf.RHF(mol)
if (UHF):
    myhf = scf.UHF(mol)
print myhf.kernel()

if UHF:
    mocoeff = myhf.mo_coeff[0]
else:
    mocoeff = myhf.mo_coeff

lmo = pipek.PM(mol).kernel(mocoeff)

#print the atom with which the lmo is associated
orbitalOrder = []
for i in range(lmo.shape[1]):
    orbitalOrder.append(numpy.argmax(numpy.absolute(lmo[:, i])))
print orbitalOrder

norbs = len(orbitalOrder)
#f = open("correlators.txt", 'w')

#print sorted(orbitalOrder)
reorder = []
for i in range(norbs):
    reorder.append(orbitalOrder.index(i))
Exemplo n.º 7
0
from pyscf import gto, scf, ao2mo, mcscf, tools, fci
from pyscf.shciscf import shci, settings
from pyscf.lo import pipek

r = 0.529177
atomstring = ""
for i in range(20):
    atomstring += "H 0 0 %g\n" % (i * r)

mol = gto.M(atom=atomstring, basis='sto-6g', verbose=2, symmetry=0, spin=0)
myhf = scf.RHF(mol)
myhf.kernel()

print myhf.e_tot
#localized orbitals
lmo = pipek.PM(mol).kernel(myhf.mo_coeff)

#print the atom with which the lmo is associated
for i in range(lmo.shape[1]):
    print numpy.argmax(numpy.absolute(lmo[:, i])),
print

#this gives the mo coeffficients in terms of lmo
S = myhf.get_ovlp(mol)
uc = reduce(numpy.dot, (myhf.mo_coeff.T, S, lmo)).T

#write the UC(lmo, mo) to disk
norbs = myhf.mo_coeff.shape[0]
fileHF = open("hf.txt", 'w')
for i in range(norbs):
    for j in range(norbs):