Exemplo n.º 1
0
def DMRGSCF(mf, norb, nelec, maxM=1000, tol=1.e-8, *args, **kwargs):
    '''Shortcut function to setup CASSCF using the DMRG solver.  The DMRG
    solver is properly initialized in this function so that the 1-step
    algorithm can be applied with DMRG-CASSCF.

    Examples:

    >>> mol = gto.M(atom='C 0 0 0; C 0 0 1')
    >>> mf = scf.RHF(mol).run()
    >>> mc = DMRGSCF(mf, 4, 4)
    >>> mc.kernel()
    -74.414908818611522
    '''
    if getattr(mf, 'with_df', None):
        mc = mcscf.DFCASSCF(mf, norb, nelec, *args, **kwargs)
    else:
        mc = mcscf.CASSCF(mf, norb, nelec, *args, **kwargs)
    mc.fcisolver = DMRGCI(mf.mol, maxM, tol=tol)
    mc.callback = mc.fcisolver.restart_scheduler_()
    if mc.chkfile == mc._scf._chkfile.name:
        # Do not delete chkfile after mcscf
        mc.chkfile = tempfile.mktemp(dir=settings.BLOCKSCRATCHDIR)
        if not os.path.exists(settings.BLOCKSCRATCHDIR):
            os.makedirs(settings.BLOCKSCRATCHDIR)
    return mc
Exemplo n.º 2
0
    def test_assign_cderi(self):
        nao = molsym.nao_nr()
        w, u = scipy.linalg.eigh(mol.intor('int2e_sph', aosym='s4'))
        idx = w > 1e-9

        mf = scf.density_fit(scf.RHF(molsym))
        mf._cderi = (u[:, idx] * numpy.sqrt(w[idx])).T.copy()
        mf.kernel()

        mc = mcscf.DFCASSCF(mf, 6, 6)
        mc.kernel()
        self.assertAlmostEqual(mc.e_tot, -108.98010545803884, 7)
Exemplo n.º 3
0
 def test_df_ao2mo(self):
     mf = scf.density_fit(msym)
     mf.max_memory = 100
     mf.kernel()
     mc = mcscf.DFCASSCF(mf, 4, 4)
     with df.load(mf._cderi) as feri:
         cderi = numpy.asarray(feri)
     eri0 = numpy.dot(cderi.T, cderi)
     nmo = mc.mo_coeff.shape[1]
     ncore = mc.ncore
     nocc = ncore + mc.ncas
     eri0 = ao2mo.restore(1, ao2mo.kernel(eri0, mc.mo_coeff), nmo)
     eris = mc.ao2mo(mc.mo_coeff)
     self.assertTrue(numpy.allclose(eri0[:,:,ncore:nocc,ncore:nocc], eris.ppaa))
     self.assertTrue(numpy.allclose(eri0[:,ncore:nocc,:,ncore:nocc], eris.papa))
Exemplo n.º 4
0
    def test_init(self):
        from pyscf.mcscf import df
        mf = scf.RHF(mol)
        self.assertTrue(isinstance(mcscf.CASCI(mf, 2, 2), mcscf.casci.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(mf.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASCI(mf.newton(), 2, 2), mcscf.casci.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(mf.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASCI(mf.newton().density_fit(), 2, 2), mcscf.casci.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(mf.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(mcscf.CASSCF(mf, 2, 2), mcscf.mc1step.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(mf.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(mf.newton(), 2, 2), mcscf.mc1step.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(mf.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(mf.newton().density_fit(), 2, 2), mcscf.mc1step.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(mf.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(mcscf.DFCASCI(mf, 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASCI(mf.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASCI(mf.newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASCI(mf.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASCI(mf.newton().density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASCI(mf.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(mcscf.DFCASSCF(mf, 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASSCF(mf.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASSCF(mf.newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASSCF(mf.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASSCF(mf.newton().density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.DFCASSCF(mf.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(mcscf.CASCI(msym, 2, 2), mcscf.casci_symm.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(msym.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASCI(msym.newton(), 2, 2), mcscf.casci_symm.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(msym.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASCI(msym.newton().density_fit(), 2, 2), mcscf.casci_symm.CASCI))
        self.assertTrue(isinstance(mcscf.CASCI(msym.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(mcscf.CASSCF(msym, 2, 2), mcscf.mc1step_symm.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(msym.density_fit(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(msym.newton(), 2, 2), mcscf.mc1step_symm.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(msym.density_fit().newton(), 2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(msym.newton().density_fit(), 2, 2), mcscf.mc1step_symm.CASSCF))
        self.assertTrue(isinstance(mcscf.CASSCF(msym.density_fit().newton().density_fit(), 2, 2), df._DFCASSCF))

        self.assertTrue(isinstance(msym.CASCI(2, 2), mcscf.casci_symm.CASCI))
        self.assertTrue(isinstance(msym.density_fit().CASCI(2, 2), df._DFCASCI))
        self.assertTrue(isinstance(msym.density_fit().CASCI(2, 2), mcscf.casci_symm.CASCI))
        self.assertTrue(isinstance(msym.CASSCF(2, 2), mcscf.mc1step_symm.CASSCF))
        self.assertTrue(isinstance(msym.density_fit().CASSCF(2, 2), df._DFCASSCF))
        self.assertTrue(isinstance(msym.density_fit().CASSCF(2, 2), mcscf.mc1step_symm.CASSCF))
'''

mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz')

#
# Integrals in memory. The size of the integral array is (M,N*(N+1)/2), where
# the last two AO indices are compressed due to the symmetry
#
int3c = df.incore.cholesky_eri(mol, auxbasis='ccpvdz-fit')
mf = scf.density_fit(scf.RHF(mol))
mf.with_df._cderi = int3c
mf.kernel()

# 3-cetner DF or Cholesky decomposed integrals need to be initialized once in
# mf.with_df._cderi.  DFCASSCF method automatically use the approximate integrals
mc = mcscf.DFCASSCF(mf, 8, 8)
mc.kernel()


#
# Integrals on disk
#
ftmp = tempfile.NamedTemporaryFile()
df.outcore.cholesky_eri(mol, ftmp.name, auxbasis='ccpvdz-fit')

with h5py.File(ftmp.name, 'r') as file1:
    mf = scf.density_fit(scf.RHF(mol))
# Note, here the integral object file1['eri_mo'] are not loaded in memory.
# It is still the HDF5 array object held on disk.  The HDF5 array can be used
# the same way as the regular numpy ndarray stored in memory.
    mf.with_df._cderi = file1['eri_mo']
Exemplo n.º 6
0
      pass
    elif (itype >= 3 and itype <= 10):
      ncore += 1
    elif (itype >= 11 and itype <= 18):
      ncore += 2
    elif (itype >= 19 and itype <= 36):
      ncore += 6

aolst1 = ['N 2s']
aolst2 = ['N 2p']
aolst3 = ['N 3s']
aolst4 = ['N 3p']
aolst = aolst1 + aolst2 + aolst3 + aolst4
ncas, nelecas, mo = avas.kernel(mf, aolst, threshold_occ=0.1, threshold_vir=0.01, minao='minao', ncore=ncore)

mc = mcscf.DFCASSCF(mf, ncas, nelecas)
#mc = mcscf.DFCASSCF(mf, ncas, nelecas, auxbasis='aug-cc-pvdz-jkfit')
mc.max_cycle_macro = 250
mc.max_cycle_micro = 7
mc.chkfile = name+'.chk'
mc.fcisolver = fci.direct_spin0_symm.FCI()
mc.fix_spin_(shift=.5, ss=0)
#mc.__dict__.update(scf.chkfile.load(name+'.chk', 'mcscf'))
#mo = lib.chkfile.load(name+'.chk', 'mcscf/mo_coeff')
mc.kernel(mo)

nmo = mc.ncore + mc.ncas
rdm1, rdm2 = mc.fcisolver.make_rdm12(mc.ci, mc.ncas, mc.nelecas) 
rdm1, rdm2 = mcscf.addons._make_rdm12_on_mo(rdm1, rdm2, mc.ncore, mc.ncas, nmo)

den_file = name + '.den'
Exemplo n.º 7
0
    mo = addons.sort_mo(mc, m.mo_coeff, (3, 4, 6, 7, 8, 9), 1)
    emc = mc.kernel(mo)[0]
    print(ehf, emc, emc - ehf)
    #-76.0267656731 -76.0873922924 -0.0606266193028
    print(emc - -76.0873923174, emc - -76.0926176464)

    mc = approx_hessian(mcscf.CASSCF(m, 6, (3, 1)))
    mc.verbose = 4
    emc = mc.mc2step(mo)[0]
    print(emc - -75.7155632535814)

    mf = scf.density_fit(m)
    mf.kernel()
    #mc = density_fit(mcscf.CASSCF(mf, 6, 4))
    #mc = mcscf.CASSCF(mf, 6, 4)
    mc = mcscf.DFCASSCF(mf, 6, 4)
    mc.verbose = 4
    mo = addons.sort_mo(mc, mc.mo_coeff, (3, 4, 6, 7, 8, 9), 1)
    emc = mc.kernel(mo)[0]
    print(emc, 'ref = -76.0917567904955', emc - -76.0917567904955)
    mc.with_dep4 = True
    mc.max_cycle_micro = 10
    emc = mc.kernel(mo)[0]
    print(emc, 'ref = -76.0917567904955', emc - -76.0917567904955)

    #mc = density_fit(mcscf.CASCI(mf, 6, 4))
    #mc = mcscf.CASCI(mf, 6, 4)
    mc = mcscf.DFCASCI(mf, 6, 4)
    mo = addons.sort_mo(mc, mc.mo_coeff, (3, 4, 6, 7, 8, 9), 1)
    emc = mc.kernel(mo)[0]
    print(emc, 'ref = -76.0476686258461', emc - -76.0476686258461)
Exemplo n.º 8
0
 def CASSCF(self, ncas, nelecas, auxbasis=None, ncore=None, frozen=None):
     from pyscf import mcscf
     return mcscf.DFCASSCF(self, ncas, nelecas, auxbasis, ncore, frozen)
Exemplo n.º 9
0
    ["C", (-1.35568919, 1.81920887, -0.00868348)],
    ["H", (-1.20806619, -0.34108413, -0.00755148)],
    ["H", (1.28636081, -0.34128013, -0.00668648)],
    ["H", (2.53407081, 1.81906387, -0.00736748)],
    ["H", (1.28693681, 3.97963587, -0.00925948)],
    ["H", (-1.20821019, 3.97969587, -0.01063248)],
    ["H", (-2.45529319, 1.81939187, -0.00886348)],
],
          basis='ccpvtz')

mf = scf.RHF(mol)
mf.conv_tol = 1e-8
e = mf.kernel()

#
# DFCASSCF uses density-fitting 2e integrals overall, regardless the
# underlying mean-filed object
#
mc = mcscf.DFCASSCF(mf, 6, 6)
mo = mc.sort_mo([17, 20, 21, 22, 23, 30])
mc.kernel(mo)
print('E(CAS) = %.12f, ref = -230.845892901370' % mc.e_tot)

#
# Assign DF basis
#
mc = mcscf.DFCASSCF(mf, 6, 6, auxbasis='ccpvtzfit')
mo = mc.sort_mo([17, 20, 21, 22, 23, 30])
mc.kernel(mo)
print('E(CAS) = %.12f, ref = -230.845892901370' % mc.e_tot)
Exemplo n.º 10
0
def solve (frag, guess_1RDM, chempot_imp):

    # Augment OEI with the chemical potential
    OEI = frag.impham_OEI_C - chempot_imp

    # Do I need to get the full RHF solution?
    guess_orbs_av = len (frag.imp_cache) == 2 or frag.norbs_as > 0 

    # Get the RHF solution
    mol = gto.Mole()
    abs_2MS = int (round (2 * abs (frag.target_MS)))
    abs_2S = int (round (2 * abs (frag.target_S)))
    sign_MS = int (np.sign (frag.target_MS)) or 1
    mol.spin = abs_2MS
    mol.verbose = 0 
    if frag.mol_stdout is None:
        mol.output = frag.mol_output
        mol.verbose = 0 if frag.mol_output is None else lib.logger.DEBUG
    mol.atom.append(('H', (0, 0, 0)))
    mol.nelectron = frag.nelec_imp
    if frag.enforce_symmetry:
        mol.groupname  = frag.symmetry
        mol.symm_orb   = get_subspace_symmetry_blocks (frag.loc2imp, frag.loc2symm)
        mol.irrep_name = frag.ir_names
        mol.irrep_id   = frag.ir_ids
    mol.max_memory = frag.ints.max_memory
    mol.build ()
    if frag.mol_stdout is None:
        frag.mol_stdout = mol.stdout
    else:
        mol.stdout = frag.mol_stdout
        mol.verbose = 0 if frag.mol_output is None else lib.logger.DEBUG
    if frag.enforce_symmetry: mol.symmetry = True
    #mol.incore_anyway = True
    mf = scf.RHF(mol)
    mf.get_hcore = lambda *args: OEI
    mf.get_ovlp = lambda *args: np.eye(frag.norbs_imp)
    mf.energy_nuc = lambda *args: frag.impham_CONST
    if frag.impham_CDERI is not None:
        mf = mf.density_fit ()
        mf.with_df._cderi = frag.impham_CDERI
    else:
        mf._eri = ao2mo.restore(8, frag.impham_TEI, frag.norbs_imp)
    mf = fix_my_RHF_for_nonsinglet_env (mf, frag.impham_OEI_S)
    mf.__dict__.update (frag.mf_attr)
    if guess_orbs_av: mf.max_cycle = 2
    mf.scf (guess_1RDM)
    if (not mf.converged) and (not guess_orbs_av):
        if np.any (np.abs (frag.impham_OEI_S) > 1e-8) and mol.spin != 0:
            raise NotImplementedError('Gradient and Hessian fixes for nonsinglet environment of Newton-descent ROHF algorithm')
        print ("CASSCF RHF-step not converged on fixed-point iteration; initiating newton solver")
        mf = mf.newton ()
        mf.kernel ()

    # Instability check and repeat
    if not guess_orbs_av:
        for i in range (frag.num_mf_stab_checks):
            if np.any (np.abs (frag.impham_OEI_S) > 1e-8) and mol.spin != 0:
                raise NotImplementedError('ROHF stability-check fixes for nonsinglet environment')
            mf.mo_coeff = mf.stability ()[0]
            guess_1RDM = mf.make_rdm1 ()
            mf = scf.RHF(mol)
            mf.get_hcore = lambda *args: OEI
            mf.get_ovlp = lambda *args: np.eye(frag.norbs_imp)
            mf._eri = ao2mo.restore(8, frag.impham_TEI, frag.norbs_imp)
            mf = fix_my_RHF_for_nonsinglet_env (mf, frag.impham_OEI_S)
            mf.scf (guess_1RDM)
            if not mf.converged:
                mf = mf.newton ()
                mf.kernel ()

    E_RHF = mf.e_tot
    print ("CASSCF RHF-step energy: {}".format (E_RHF))

    # Get the CASSCF solution
    CASe = frag.active_space[0]
    CASorb = frag.active_space[1] 
    checkCAS =  (CASe <= frag.nelec_imp) and (CASorb <= frag.norbs_imp)
    if (checkCAS == False):
        CASe = frag.nelec_imp
        CASorb = frag.norbs_imp
    if (abs_2MS > abs_2S):
        CASe = ((CASe + sign_MS * abs_2S) // 2, (CASe - sign_MS * abs_2S) // 2)
    else:
        CASe = ((CASe + sign_MS * abs_2MS) // 2, (CASe - sign_MS * abs_2MS) // 2)
    if frag.impham_CDERI is not None:
        mc = mcscf.DFCASSCF(mf, CASorb, CASe)
    else:
        mc = mcscf.CASSCF(mf, CASorb, CASe)
    smult = abs_2S + 1 if frag.target_S is not None else (frag.nelec_imp % 2) + 1
    mc.fcisolver = csf_solver (mf.mol, smult, symm=frag.enforce_symmetry)
    if frag.enforce_symmetry: mc.fcisolver.wfnsym = frag.wfnsym
    mc.max_cycle_macro = 50 if frag.imp_maxiter is None else frag.imp_maxiter
    mc.conv_tol = min (1e-9, frag.conv_tol_grad**2)  
    mc.ah_start_tol = mc.conv_tol / 10
    mc.ah_conv_tol = mc.conv_tol / 10
    mc.__dict__.update (frag.corr_attr)
    mc = fix_my_CASSCF_for_nonsinglet_env (mc, frag.impham_OEI_S)
    norbs_amo = mc.ncas
    norbs_cmo = mc.ncore
    norbs_imo = frag.norbs_imp - norbs_amo
    nelec_amo = sum (mc.nelecas)
    norbs_occ = norbs_amo + norbs_cmo
    #mc.natorb = True

    # Guess orbitals
    ci0 = None
    dm_imp = frag.get_oneRDM_imp ()
    fock_imp = mf.get_fock (dm=dm_imp)
    if len (frag.imp_cache) == 2:
        imp2mo, ci0 = frag.imp_cache
        print ("Taking molecular orbitals and ci vector from cache")
    elif frag.norbs_as > 0:
        nelec_imp_guess = int (round (np.trace (frag.oneRDMas_loc)))
        norbs_cmo_guess = (frag.nelec_imp - nelec_imp_guess) // 2
        print ("Projecting stored amos (frag.loc2amo; spanning {} electrons) onto the impurity basis and filling the remainder with default guess".format (nelec_imp_guess))
        imp2mo, my_occ = project_amo_manually (frag.loc2imp, frag.loc2amo, fock_imp, norbs_cmo_guess, dm=frag.oneRDMas_loc)
    elif frag.loc2amo_guess is not None:
        print ("Projecting stored amos (frag.loc2amo_guess) onto the impurity basis (no amo dm available)")
        imp2mo, my_occ = project_amo_manually (frag.loc2imp, frag.loc2amo_guess, fock_imp, norbs_cmo, dm=None)
        frag.loc2amo_guess = None
    else:
        dm_imp = np.asarray (mf.make_rdm1 ())
        while dm_imp.ndim > 2:
            dm_imp = dm_imp.sum (0)
        imp2mo = mf.mo_coeff
        fock_imp = mf.get_fock (dm=dm_imp)
        fock_mo = represent_operator_in_basis (fock_imp, imp2mo)
        _, evecs = matrix_eigen_control_options (fock_mo, sort_vecs=1)
        imp2mo = imp2mo @ evecs
        my_occ = ((dm_imp @ imp2mo) * imp2mo).sum (0)
        print ("No stored amos; using mean-field canonical MOs as initial guess")
    # Guess orbital processing
    if callable (frag.cas_guess_callback):
        mo = reduce (np.dot, (frag.ints.ao2loc, frag.loc2imp, imp2mo))
        mo = frag.cas_guess_callback (frag.ints.mol, mc, mo)
        imp2mo = reduce (np.dot, (frag.imp2loc, frag.ints.ao2loc.conjugate ().T, frag.ints.ao_ovlp, mo))
        frag.cas_guess_callback = None

    # Guess CI vector
    if len (frag.imp_cache) != 2 and frag.ci_as is not None:
        loc2amo_guess = np.dot (frag.loc2imp, imp2mo[:,norbs_cmo:norbs_occ])
        metric = np.arange (CASorb) + 1
        gOc = np.dot (loc2amo_guess.conjugate ().T, (frag.ci_as_orb * metric[None,:]))
        umat_g, svals, umat_c = matrix_svd_control_options (gOc, sort_vecs=1, only_nonzero_vals=True)
        if (svals.size == norbs_amo):
            print ("Loading ci guess despite shifted impurity orbitals; singular value error sum: {}".format (np.sum (svals - metric)))
            imp2mo[:,norbs_cmo:norbs_occ] = np.dot (imp2mo[:,norbs_cmo:norbs_occ], umat_g)
            ci0 = transform_ci_for_orbital_rotation (frag.ci_as, CASorb, CASe, umat_c)
        else:
            print ("Discarding stored ci guess because orbitals are too different (missing {} nonzero svals)".format (norbs_amo-svals.size))

    # Symmetry align if possible
    imp2unac = frag.align_imporbs_symm (np.append (imp2mo[:,:norbs_cmo], imp2mo[:,norbs_occ:], axis=1), sorting_metric=fock_imp,
        sort_vecs=1, orbital_type='guess unactive', mol=mol)[0]
    imp2mo[:,:norbs_cmo] = imp2unac[:,:norbs_cmo]
    imp2mo[:,norbs_occ:] = imp2unac[:,norbs_cmo:]
    #imp2mo[:,:norbs_cmo] = frag.align_imporbs_symm (imp2mo[:,:norbs_cmo], sorting_metric=fock_imp, sort_vecs=1, orbital_type='guess inactive', mol=mol)[0]
    imp2mo[:,norbs_cmo:norbs_occ], umat = frag.align_imporbs_symm (imp2mo[:,norbs_cmo:norbs_occ], sorting_metric=fock_imp,
        sort_vecs=1, orbital_type='guess active', mol=mol)
    #imp2mo[:,norbs_occ:] = frag.align_imporbs_symm (imp2mo[:,norbs_occ:], sorting_metric=fock_imp, sort_vecs=1, orbital_type='guess external', mol=mol)[0]
    if frag.enforce_symmetry:
        imp2mo = cleanup_subspace_symmetry (imp2mo, mol.symm_orb)
        err_symm = measure_subspace_blockbreaking (imp2mo, mol.symm_orb)
        err_orth = measure_basis_nonorthonormality (imp2mo)
        print ("Initial symmetry error after cleanup = {}".format (err_symm))
        print ("Initial orthonormality error after cleanup = {}".format (err_orth))
    if ci0 is not None: ci0 = transform_ci_for_orbital_rotation (ci0, CASorb, CASe, umat)
        

    # Guess orbital printing
    if frag.mfmo_printed == False and frag.ints.mol.verbose:
        ao2mfmo = reduce (np.dot, [frag.ints.ao2loc, frag.loc2imp, imp2mo])
        print ("Writing {} {} orbital molden".format (frag.frag_name, 'CAS guess'))
        molden.from_mo (frag.ints.mol, frag.filehead + frag.frag_name + '_mfmorb.molden', ao2mfmo, occ=my_occ)
        frag.mfmo_printed = True
    elif len (frag.active_orb_list) > 0: # This is done AFTER everything else so that the _mfmorb.molden always has consistent ordering
        print('Applying caslst: {}'.format (frag.active_orb_list))
        imp2mo = mc.sort_mo(frag.active_orb_list, mo_coeff=imp2mo)
        frag.active_orb_list = []
    if len (frag.frozen_orb_list) > 0:
        mc.frozen = copy.copy (frag.frozen_orb_list)
        print ("Applying frozen-orbital list (this macroiteration only): {}".format (frag.frozen_orb_list))
        frag.frozen_orb_list = []

    if frag.enforce_symmetry: imp2mo = lib.tag_array (imp2mo, orbsym=label_orb_symm (mol, mol.irrep_id, mol.symm_orb, imp2mo, s=mf.get_ovlp (), check=False))

    t_start = time.time()
    E_CASSCF = mc.kernel(imp2mo, ci0)[0]
    if (not mc.converged) and np.all (np.abs (frag.impham_OEI_S) < 1e-8):
        mc = mc.newton ()
        E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    if not mc.converged:
        print ('Assuming ci vector is poisoned; discarding...')
        imp2mo = mc.mo_coeff.copy ()
        mc = mcscf.CASSCF(mf, CASorb, CASe)
        smult = abs_2S + 1 if frag.target_S is not None else (frag.nelec_imp % 2) + 1
        mc.fcisolver = csf_solver (mf.mol, smult)
        E_CASSCF = mc.kernel(imp2mo)[0]
        if not mc.converged:
            if np.any (np.abs (frag.impham_OEI_S) > 1e-8):
                raise NotImplementedError('Gradient and Hessian fixes for nonsinglet environment of Newton-descent CASSCF algorithm')
            mc = mc.newton ()
            E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    assert (mc.converged)

    '''
    mc.conv_tol = 1e-12
    mc.ah_start_tol = 1e-10
    mc.ah_conv_tol = 1e-12
    E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    if not mc.converged:
        mc = mc.newton ()
        E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    #assert (mc.converged)
    '''
    
    # Get twoRDM + oneRDM. cs: MC-SCF core, as: MC-SCF active space
    # I'm going to need to keep some representation of the active-space orbitals

    # Symmetry align if possible
    oneRDM_amo, twoRDM_amo = mc.fcisolver.make_rdm12 (mc.ci, mc.ncas, mc.nelecas)
    fock_imp = mc.get_fock ()
    mc.mo_coeff[:,:norbs_cmo] = frag.align_imporbs_symm (mc.mo_coeff[:,:norbs_cmo], sorting_metric=fock_imp, sort_vecs=1, orbital_type='optimized inactive', mol=mol)[0]
    mc.mo_coeff[:,norbs_cmo:norbs_occ], umat = frag.align_imporbs_symm (mc.mo_coeff[:,norbs_cmo:norbs_occ],
        sorting_metric=oneRDM_amo, sort_vecs=-1, orbital_type='optimized active', mol=mol)
    mc.mo_coeff[:,norbs_occ:] = frag.align_imporbs_symm (mc.mo_coeff[:,norbs_occ:], sorting_metric=fock_imp, sort_vecs=1, orbital_type='optimized external', mol=mol)[0]
    if frag.enforce_symmetry:
        amo2imp = mc.mo_coeff[:,norbs_cmo:norbs_occ].conjugate ().T
        mc.mo_coeff = cleanup_subspace_symmetry (mc.mo_coeff, mol.symm_orb)
        umat = umat @ (amo2imp @ mc.mo_coeff[:,norbs_cmo:norbs_occ])
        err_symm = measure_subspace_blockbreaking (mc.mo_coeff, mol.symm_orb)
        err_orth = measure_basis_nonorthonormality (mc.mo_coeff)
        print ("Final symmetry error after cleanup = {}".format (err_symm))
        print ("Final orthonormality error after cleanup = {}".format (err_orth))
    mc.ci = transform_ci_for_orbital_rotation (mc.ci, CASorb, CASe, umat)

    # Cache stuff
    imp2mo = mc.mo_coeff #mc.cas_natorb()[0]
    loc2mo = np.dot (frag.loc2imp, imp2mo)
    imp2amo = imp2mo[:,norbs_cmo:norbs_occ]
    loc2amo = loc2mo[:,norbs_cmo:norbs_occ]
    frag.imp_cache = [mc.mo_coeff, mc.ci]
    frag.ci_as = mc.ci
    frag.ci_as_orb = loc2amo.copy ()
    t_end = time.time()

    # oneRDM
    oneRDM_imp = mc.make_rdm1 ()

    # twoCDM
    oneRDM_amo, twoRDM_amo = mc.fcisolver.make_rdm12 (mc.ci, mc.ncas, mc.nelecas)
    oneRDMs_amo = np.stack (mc.fcisolver.make_rdm1s (mc.ci, mc.ncas, mc.nelecas), axis=0)
    oneSDM_amo = oneRDMs_amo[0] - oneRDMs_amo[1] if frag.target_MS >= 0 else oneRDMs_amo[1] - oneRDMs_amo[0]
    oneSDM_imp = represent_operator_in_basis (oneSDM_amo, imp2amo.conjugate ().T)
    print ("Norm of spin density: {}".format (linalg.norm (oneSDM_amo)))
    # Note that I do _not_ do the *real* cumulant decomposition; I do one assuming oneSDM_amo = 0.
    # This is fine as long as I keep it consistent, since it is only in the orbital gradients for this impurity that
    # the spin density matters. But it has to stay consistent!
    twoCDM_amo = get_2CDM_from_2RDM (twoRDM_amo, oneRDM_amo)
    twoCDM_imp = represent_operator_in_basis (twoCDM_amo, imp2amo.conjugate ().T)
    print('Impurity CASSCF energy (incl chempot): {}; spin multiplicity: {}; time to solve: {}'.format (E_CASSCF, spin_square (mc)[1], t_end - t_start))

    # Active-space RDM data
    frag.oneRDMas_loc  = symmetrize_tensor (represent_operator_in_basis (oneRDM_amo, loc2amo.conjugate ().T))
    frag.oneSDMas_loc  = symmetrize_tensor (represent_operator_in_basis (oneSDM_amo, loc2amo.conjugate ().T))
    frag.twoCDMimp_amo = twoCDM_amo
    frag.loc2mo  = loc2mo
    frag.loc2amo = loc2amo
    frag.E2_cum  = np.tensordot (ao2mo.restore (1, mc.get_h2eff (), mc.ncas), twoCDM_amo, axes=4) / 2
    frag.E2_cum += (mf.get_k (dm=oneSDM_imp) * oneSDM_imp).sum () / 4
    # The second line compensates for my incorrect cumulant decomposition. Anything to avoid changing the checkpoint files...

    # General impurity data
    frag.oneRDM_loc = frag.oneRDMfroz_loc + symmetrize_tensor (represent_operator_in_basis (oneRDM_imp, frag.imp2loc))
    frag.oneSDM_loc = frag.oneSDMfroz_loc + frag.oneSDMas_loc
    frag.twoCDM_imp = None # Experiment: this tensor is huge. Do I actually need to keep it? In principle, of course not.
    frag.E_imp      = E_CASSCF + np.einsum ('ab,ab->', chempot_imp, oneRDM_imp)

    return None
Exemplo n.º 11
0
norb = ncore + nact
h1e = h1[ncore:norb, ncore:norb].copy()
h1e += 2 * numpy.einsum('Qpq,Qii->pq', eri_mo[:, ncore:norb, ncore:norb],
                        eri_mo[:, :ncore, :ncore])
h1e -= numpy.einsum('Qpi,Qiq->pq', eri_mo[:, ncore:norb, :ncore],
                    eri_mo[:, :ncore, ncore:norb])

# Active space two-body integrals
h2e = eri_mo[:, ncore:norb, ncore:norb]
h2e = numpy.einsum('Qpq,Qrs->pqrs', h2e, h2e)
h2e = ao2mo.restore(8, h2e, nact)

e = fci.direct_spin1.kernel(h1e, h2e, nact, nelec, ecore=ecore, verbose=4)[0]
lib.logger.info(mf, 'Core energy: %s' % ecore)
lib.logger.info(mf, 'Total energy: %s' % e)

lib.logger.info(mf, '################')
lib.logger.info(mf, 'Reference values')
lib.logger.info(mf, '################')
mc = mcscf.DFCASSCF(mf, nact, nelec)
h1e_cas, ecore = mc.get_h1eff()
h2e_cas = mc.get_h2eff()
e = fci.direct_spin1.kernel(h1e_cas,
                            h2e_cas,
                            nact,
                            nelec,
                            ecore=ecore,
                            verbose=4)[0]
lib.logger.info(mc, 'Core energy: %s' % ecore)
lib.logger.info(mc, 'Total energy: %s' % e)
Exemplo n.º 12
0
 def test_mc1step_4o4e_df(self):
     mc = mcscf.DFCASSCF(m, 4, 4, auxbasis='weigend')
     emc = mc.mc1step()[0]
     self.assertAlmostEqual(emc, -108.9105231091045, 7)
Exemplo n.º 13
0
def solve(frag, guess_1RDM, chempot_imp):

    # Augment OEI with the chemical potential
    OEI = frag.impham_OEI - chempot_imp

    # Do I need to get the full RHF solution?
    guess_orbs_av = len(frag.imp_cache) == 2 or frag.norbs_as > 0

    # Get the RHF solution
    mol = gto.Mole()
    mol.spin = int(round(2 * frag.target_MS))
    mol.verbose = 0 if frag.mol_output is None else lib.logger.DEBUG
    mol.output = frag.mol_output
    mol.atom.append(('H', (0, 0, 0)))
    mol.nelectron = frag.nelec_imp
    mol.build()
    #mol.incore_anyway = True
    mf = scf.RHF(mol)
    mf.get_hcore = lambda *args: OEI
    mf.get_ovlp = lambda *args: np.eye(frag.norbs_imp)
    mf.energy_nuc = lambda *args: frag.impham_CONST
    if frag.impham_CDERI is not None:
        mf = mf.density_fit()
        mf.with_df._cderi = frag.impham_CDERI
    else:
        mf._eri = ao2mo.restore(8, frag.impham_TEI, frag.norbs_imp)
    mf.__dict__.update(frag.mf_attr)
    if guess_orbs_av: mf.max_cycle = 2
    mf.scf(guess_1RDM)
    if (not mf.converged) and (not guess_orbs_av):
        print(
            "CASSCF RHF-step not converged on fixed-point iteration; initiating newton solver"
        )
        mf = mf.newton()
        mf.kernel()

    # Instability check and repeat
    if not guess_orbs_av:
        for i in range(frag.num_mf_stab_checks):
            mf.mo_coeff = mf.stability()[0]
            guess_1RDM = mf.make_rdm1()
            mf = scf.RHF(mol)
            mf.get_hcore = lambda *args: OEI
            mf.get_ovlp = lambda *args: np.eye(frag.norbs_imp)
            mf._eri = ao2mo.restore(8, frag.impham_TEI, frag.norbs_imp)
            mf.scf(guess_1RDM)
            if not mf.converged:
                mf = mf.newton()
                mf.kernel()

    print("CASSCF RHF-step energy: {}".format(mf.e_tot))
    #print(mf.mo_occ)
    '''    
    idx = mf.mo_energy.argsort()
    mf.mo_energy = mf.mo_energy[idx]
    mf.mo_coeff = mf.mo_coeff[:,idx]'''

    # Get the CASSCF solution
    CASe = frag.active_space[0]
    CASorb = frag.active_space[1]
    checkCAS = (CASe <= frag.nelec_imp) and (CASorb <= frag.norbs_imp)
    if (checkCAS == False):
        CASe = frag.nelec_imp
        CASorb = frag.norbs_imp
    if (frag.target_MS > frag.target_S):
        CASe = ((CASe // 2) + frag.target_S, (CASe // 2) - frag.target_S)
    else:
        CASe = ((CASe // 2) + frag.target_MS, (CASe // 2) - frag.target_MS)
    if frag.impham_CDERI is not None:
        mc = mcscf.DFCASSCF(mf, CASorb, CASe)
    else:
        mc = mcscf.CASSCF(mf, CASorb, CASe)
    norbs_amo = mc.ncas
    norbs_cmo = mc.ncore
    norbs_imo = frag.norbs_imp - norbs_amo
    nelec_amo = sum(mc.nelecas)
    norbs_occ = norbs_amo + norbs_cmo
    #mc.natorb = True

    # Guess orbitals
    ci0 = None
    if len(frag.imp_cache) == 2:
        imp2mo, ci0 = frag.imp_cache
        print("Taking molecular orbitals and ci vector from cache")
    elif frag.norbs_as > 0:
        nelec_imp_guess = int(round(np.trace(frag.oneRDMas_loc)))
        norbs_cmo_guess = (frag.nelec_imp - nelec_imp_guess) // 2
        print(
            "Projecting stored amos (frag.loc2amo; spanning {} electrons) onto the impurity basis and filling the remainder with default guess"
            .format(nelec_imp_guess))
        imp2mo, my_occ = project_amo_manually(
            frag.loc2imp,
            frag.loc2amo,
            mf.get_fock(dm=frag.get_oneRDM_imp()),
            norbs_cmo_guess,
            dm=frag.oneRDMas_loc)
    elif frag.loc2amo_guess is not None:
        print(
            "Projecting stored amos (frag.loc2amo_guess) onto the impurity basis (no dm available)"
        )
        imp2mo, my_occ = project_amo_manually(
            frag.loc2imp,
            frag.loc2amo_guess,
            mf.get_fock(dm=frag.get_oneRDM_imp()),
            norbs_cmo,
            dm=None)
        frag.loc2amo_guess = None
    else:
        imp2mo = mc.mo_coeff
        my_occ = mf.mo_occ
        print(
            "No stored amos; using mean-field canonical MOs as initial guess")

    # Guess orbital processing
    if callable(frag.cas_guess_callback):
        mo = reduce(np.dot, (frag.ints.ao2loc, frag.loc2imp, imp2mo))
        mo = frag.cas_guess_callback(frag.ints.mol, mc, mo)
        imp2mo = reduce(np.dot, (frag.imp2loc, frag.ints.ao2loc.conjugate().T,
                                 frag.ints.ao_ovlp, mo))
        frag.cas_guess_callback = None
    elif len(frag.active_orb_list) > 0:
        print('Applying caslst: {}'.format(frag.active_orb_list))
        imp2mo = mc.sort_mo(frag.active_orb_list, mo_coeff=imp2mo)
        frag.active_orb_list = []
    if len(frag.frozen_orb_list) > 0:
        mc.frozen = copy.copy(frag.frozen_orb_list)
        print("Applying frozen-orbital list (this macroiteration only): {}".
              format(frag.frozen_orb_list))
        frag.frozen_orb_list = []

    # Guess orbital printing
    if frag.mfmo_printed == False:
        ao2mfmo = reduce(np.dot, [frag.ints.ao2loc, frag.loc2imp, imp2mo])
        molden.from_mo(frag.ints.mol,
                       frag.filehead + frag.frag_name + '_mfmorb.molden',
                       ao2mfmo,
                       occ=my_occ)
        frag.mfmo_printed = True

    # Guess CI vector
    if len(frag.imp_cache) != 2 and frag.ci_as is not None:
        loc2amo_guess = np.dot(frag.loc2imp, imp2mo[:, norbs_cmo:norbs_occ])
        gOc = np.dot(loc2amo_guess.conjugate().T, frag.ci_as_orb)
        umat_g, svals, umat_c = matrix_svd_control_options(
            gOc, sort_vecs=-1, only_nonzero_vals=True)
        if (svals.size == norbs_amo):
            print(
                "Loading ci guess despite shifted impurity orbitals; singular value sum: {}"
                .format(np.sum(svals)))
            imp2mo[:, norbs_cmo:norbs_occ] = np.dot(
                imp2mo[:, norbs_cmo:norbs_occ], umat_g)
            ci0 = transform_ci_for_orbital_rotation(frag.ci_as, CASorb, CASe,
                                                    umat_c)
        else:
            print(
                "Discarding stored ci guess because orbitals are too different (missing {} nonzero svals)"
                .format(norbs_amo - svals.size))

    t_start = time.time()
    smult = 2 * frag.target_S + 1 if frag.target_S is not None else (
        frag.nelec_imp % 2) + 1
    mc.fcisolver = csf_solver(mf.mol, smult)
    mc.max_cycle_macro = 50 if frag.imp_maxiter is None else frag.imp_maxiter
    mc.ah_start_tol = 1e-10
    mc.ah_conv_tol = 1e-10
    mc.conv_tol = 1e-9
    mc.__dict__.update(frag.corr_attr)
    E_CASSCF = mc.kernel(imp2mo, ci0)[0]
    if not mc.converged:
        mc = mc.newton()
        E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    if not mc.converged:
        print('Assuming ci vector is poisoned; discarding...')
        imp2mo = mc.mo_coeff.copy()
        mc = mcscf.CASSCF(mf, CASorb, CASe)
        smult = 2 * frag.target_S + 1 if frag.target_S is not None else (
            frag.nelec_imp % 2) + 1
        mc.fcisolver = csf_solver(mf.mol, smult)
        E_CASSCF = mc.kernel(imp2mo)[0]
        if not mc.converged:
            mc = mc.newton()
            E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    assert (mc.converged)
    '''
    mc.conv_tol = 1e-12
    mc.ah_start_tol = 1e-10
    mc.ah_conv_tol = 1e-12
    E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    if not mc.converged:
        mc = mc.newton ()
        E_CASSCF = mc.kernel(mc.mo_coeff, mc.ci)[0]
    #assert (mc.converged)
    '''

    # Get twoRDM + oneRDM. cs: MC-SCF core, as: MC-SCF active space
    # I'm going to need to keep some representation of the active-space orbitals
    imp2mo = mc.mo_coeff  #mc.cas_natorb()[0]
    loc2mo = np.dot(frag.loc2imp, imp2mo)
    imp2amo = imp2mo[:, norbs_cmo:norbs_occ]
    loc2amo = loc2mo[:, norbs_cmo:norbs_occ]
    frag.imp_cache = [mc.mo_coeff, mc.ci]
    frag.ci_as = mc.ci
    frag.ci_as_orb = loc2amo.copy()
    t_end = time.time()
    print(
        'Impurity CASSCF energy (incl chempot): {}; spin multiplicity: {}; time to solve: {}'
        .format(E_CASSCF,
                spin_square(mc)[1], t_end - t_start))

    # oneRDM
    oneRDM_imp = mc.make_rdm1()

    # twoCDM
    oneRDM_amo, twoRDM_amo = mc.fcisolver.make_rdm12(mc.ci, mc.ncas,
                                                     mc.nelecas)
    # Note that I do _not_ do the *real* cumulant decomposition; I do one assuming oneRDMs_amo_alpha = oneRDMs_amo_beta
    # This is fine as long as I keep it consistent, since it is only in the orbital gradients for this impurity that
    # the spin density matters. But it has to stay consistent!
    twoCDM_amo = get_2CDM_from_2RDM(twoRDM_amo, oneRDM_amo)
    twoCDM_imp = represent_operator_in_basis(twoCDM_amo, imp2amo.conjugate().T)

    # General impurity data
    frag.oneRDM_loc = symmetrize_tensor(
        frag.oneRDMfroz_loc +
        represent_operator_in_basis(oneRDM_imp, frag.imp2loc))
    frag.twoCDM_imp = None  # Experiment: this tensor is huge. Do I actually need to keep it? In principle, of course not.
    frag.E_imp = E_CASSCF + np.einsum('ab,ab->', chempot_imp, oneRDM_imp)

    # Active-space RDM data
    frag.oneRDMas_loc = symmetrize_tensor(
        represent_operator_in_basis(oneRDM_amo,
                                    loc2amo.conjugate().T))
    frag.twoCDMimp_amo = twoCDM_amo
    frag.loc2mo = loc2mo
    frag.loc2amo = loc2amo
    frag.E2_cum = 0.5 * np.tensordot(
        ao2mo.restore(1, mc.get_h2eff(), mc.ncas), twoCDM_amo, axes=4)

    return None
Exemplo n.º 14
0
mol.spin = 0
mol.symmetry = 1
mol.symmetry_subgroup = 'D2h'
mol.charge = 0
mol.build()

int3c = df.incore.cholesky_eri(mol, auxbasis='ccpvtz-fit')
mf = scf.density_fit(scf.RHF(mol))
mf.with_df._cderi = int3c
mf.auxbasis = 'cc-pvtz-fit'
mf.conv_tol = 1e-12
mf.direct_scf = 1
mf.level_shift = 0.1
mf.kernel()

mc = mcscf.DFCASSCF(mf, 10, 10)
mc.fcisolver.tol = 1e-8
mc.fcisolver.max_cycle = 250
mc.max_cycle_macro = 250
mc.max_cycle_micro = 7
mc.fcisolver.nroots = 1
mc.kernel()

nao, nmo = mf.mo_coeff.shape
rdm1, rdm2 = mc.fcisolver.make_rdm12(mc.ci, mc.ncas, mc.nelecas) 
rdm1, rdm2 = mcscf.addons._make_rdm12_on_mo(rdm1, rdm2, mc.ncore, mc.ncas, nmo)

naux = mf._cderi.shape[0]
dferi = numpy.empty((naux,nao,nao))
for i in range(naux):
    dferi[i] = lib.unpack_tril(mf._cderi[i])