Exemplo n.º 1
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None or mydf.auxcell is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    eri = aft_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    eri += df_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    return eri
Exemplo n.º 2
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    eri = aft_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    eri += df_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    return eri
Exemplo n.º 3
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    eri = aft_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    eri += df_ao2mo.get_eri(mydf, kptijkl, compact=compact)
    return eri
Exemplo n.º 4
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    if mydf._cderi is None or mydf.auxcell is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs, ) * 4
    eri_mo = aft_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    eri_mo += df_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    return eri_mo
Exemplo n.º 5
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    eri_mo = aft_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    eri_mo += df_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    return eri_mo
Exemplo n.º 6
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    kptijkl = _format_kpts(kpts)
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    eri_mo = aft_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    eri_mo += df_ao2mo.general(mydf, mo_coeffs, kptijkl, compact=compact)
    return eri_mo
Exemplo n.º 7
0
def ao2mo(mydf, mo_coeffs, kpts):
    """
    For ctf, this function needs to be used with caution,
    this function calls read on j3c twice, if other process does not explicitly perform ao2mo transformation, j3c needs to be read twice
    eg,
    if rank==0:
        eri = mydf.ao2mo(mo_coeffs, kpts)
    else:
        mydf.j3c.read([])
        mydf.j3c.read([])
    """
    if mydf.j3c is None: mydf.build()
    log = Logger(mydf.stdout, mydf.verbose)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, np.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        log.warn('df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return np.zeros([mo.shape[1] for mo in mo_coeffs])

    ijid, ijdagger = get_member(kpti, kptj, mydf.kptij_lst)
    klid, kldagger = get_member(kptk, kptl, mydf.kptij_lst)
    aux_idx = np.arange(mydf.j3c.size).reshape(mydf.j3c.shape)
    nao, naux = mydf.j3c.shape[1], mydf.j3c.shape[-1]
    ijid = aux_idx[ijid].ravel()
    klid = aux_idx[klid].ravel()

    ijL = mydf.j3c.read(ijid).reshape(nao,nao,naux)
    if ijdagger:
        ijL = ijL.transpose(1,0,2).conj()

    klL = mydf.j3c.read(klid).reshape(nao,nao,naux)
    if kldagger:
        klL = klL.transpose(1,0,2).conj()

    pvL = np.dot(mo_coeffs[0].conj().T, ijL.transpose(1,0,2))
    pqL = np.dot(mo_coeffs[1].T, pvL).transpose(1,0,2)
    pvL = ijL = None
    rvL = np.dot(mo_coeffs[2].conj().T, klL.transpose(1,0,2))
    rLs = np.dot(mo_coeffs[3].T, rvL).transpose(1,2,0)
    rvL = klL = None
    eri = np.dot(pqL,rLs)
    return eri
Exemplo n.º 8
0
def get_eri(mydf, kpts=None):
    """
    For ctf, this function needs to be used with caution,
    this function calls read on j3c twice, if other process does not explicitly call this func, j3c still needs to be read twice
    eg,
    if rank==0:
        eri = mydf.get_eri(kpts)
    else:
        mydf.j3c.read([])
        mydf.j3c.read([])
    """
    if mydf.j3c is None: mydf.build()
    log = Logger(mydf.stdout, mydf.verbose)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if not _iskconserv(cell, kptijkl):
        log.warn('df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return np.zeros([mo.shape[1] for mo in mo_coeffs])

    ijid, ijdagger = get_member(kpti, kptj, mydf.kptij_lst)
    klid, kldagger = get_member(kptk, kptl, mydf.kptij_lst)
    aux_idx = np.arange(mydf.j3c.size).reshape(mydf.j3c.shape)
    nao, naux = mydf.j3c.shape[1], mydf.j3c.shape[-1]
    ijid = aux_idx[ijid].ravel()
    klid = aux_idx[klid].ravel()

    ijL = mydf.j3c.read(ijid).reshape(nao,nao,naux)
    if ijdagger:
        ijL = ijL.transpose(1,0,2).conj()

    klL = mydf.j3c.read(klid).reshape(nao,nao,naux)
    if kldagger:
        klL = klL.transpose(1,0,2).conj()

    eri = np.dot(ijL,klL.transpose(0,2,1))
    return eri
Exemplo n.º 9
0
def get_eri(mydf, kpts=None, compact=True):
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    nao = cell.nao_nr()
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            lib.ddot(pqkR, pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI, pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR, pqkI, pqkR.T, pqkI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
# rho'_rs(G-k_rs) = conj(rho_rs(-G+k_rs))
#                 = conj(rho_rs(-G+k_rs) - d_{k_rs:Q,rs} * Q(-G+k_rs))
#                 = rho_rs(G-k_rs) - conj(d_{k_rs:Q,rs}) * Q(G-k_rs)
# rho_pq(G+k_pq) * conj(rho'_rs(G-k_rs))
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)
Exemplo n.º 10
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    nao = cell.nao_nr()
    nao_pair = nao * (nao + 1) // 2
    max_memory = max(2000, mydf.max_memory - lib.current_memory()[0] - nao ** 4 * 8 / 1e6)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eriR = numpy.zeros((nao_pair, nao_pair))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, 1, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao ** 2, -1)
        return eriR

    elif (abs(kpti - kptk).sum() < KPT_DIFF_TOL) and (abs(kptj - kptl).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI * 1j

    ####################
    # (kpt) i == j == k == l != 0
    #
    # (kpt) i == l && j == k && i != j && j != k  =>
    # both vbar and ovlp are zero. It corresponds to the exchange integral.
    #
    # complex integrals, N^4 elements
    elif (abs(kpti - kptl).sum() < KPT_DIFF_TOL) and (abs(kptj - kptk).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
        # transpose(0,1,3,2) because
        # j == k && i == l  =>
        # (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR + eriI * 1j).reshape(-1, nao, nao), axes=(0, 2, 1))
        return eri.reshape(nao ** 2, -1)

    ####################
    # aosym = s1, complex integrals
    #
    # kpti == kptj  =>  kptl == kptk
    # If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
    # vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
    # So  kptl/b - kptk/b  must be -1 < k/b < 1.
    #
    else:
        eriR = numpy.zeros((nao * nao, nao * nao))
        eriI = numpy.zeros((nao * nao, nao * nao))
        for (LpqR, LpqI), (LrsR, LrsI) in lib.izip(
            mydf.sr_loop(kptijkl[:2], max_memory, False), mydf.sr_loop(kptijkl[2:], max_memory, False)
        ):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, 1, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI * 1j
Exemplo n.º 11
0
def get_eri(mydf, kpts=None, compact=True):
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    coulG = mydf.weighted_coulG(q, False, mydf.gs)
    nao = cell.nao_nr()
    nao_pair = nao * (nao + 1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair, nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            lib.ddot(pqkR, pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI, pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2, -1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif is_zero(kpti - kptl) and is_zero(kptj - kptk):
        eriR = numpy.zeros((nao**2, nao**2))
        eriI = numpy.zeros((nao**2, nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            # rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR, pqkI, pqkR.T, pqkI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
        # transpose(0,1,3,2) because
        # j == k && i == l  =>
        # (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        # rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR + eriI * 1j).reshape(-1, nao, nao),
                            axes=(0, 2, 1))
        return eri.reshape(nao**2, -1)


####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2, nao**2))
        eriI = numpy.zeros((nao**2, nao**2))
        # rho_rs(-G-k) = rho_rs(conj(G+k)) = conj(rho_sr(G+k))
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            # rho_pq(G+k_pq) * conj(rho_sr(G+k_pq))
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR + eriI * 1j)
Exemplo n.º 12
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs, ) * 4
    q = kptj - kpti
    coulG = mydf.weighted_coulG(q, False, mydf.gs)
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0],
                                                     mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2],
                                                     mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair, nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2])
               and iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        ijR = ijI = klR = klI = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            buf = lib.transpose(pqkR, out=buf)
            ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice, buf, klR,
                               klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            buf = lib.transpose(pqkI, out=buf)
            ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice, buf, klI,
                               klmosym, mokl, klslice, sym)
            lib.ddot(ijI.T, klI, 1, eri_mo, 1)
            pqkR = pqkI = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti - kptl) and is_zero(kptj - kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair, nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3])
               and iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory):
            buf = lib.transpose(pqkR + pqkI * 1j, out=buf)
            buf *= numpy.sqrt(coulG[p0:p1]).reshape(-1, 1)
            zij, zlk = _ztrans(buf, zij, moij, ijslice, buf, zlk, molk,
                               lkslice, sym)
            lib.dot(zij.T, zlk.conj(), 1, eri_mo, 1)
            pqkR = pqkI = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1, nmol, nmok), axes=(0, 2, 1))
        return eri_mo.reshape(nij_pair, nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair, nkl_pair), dtype=numpy.complex)

        tao = []
        ao_loc = None
        zij = zkl = buf = None
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], q, max_memory=max_memory*.5)):
            buf = lib.transpose(pqkR + pqkI * 1j, out=buf)
            zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij)
            buf = lib.transpose(rskR - rskI * 1j, out=buf)
            zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl)
            zij *= coulG[p0:p1].reshape(-1, 1)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            pqkR = pqkI = rskR = rskI = None
        return eri_mo
Exemplo n.º 13
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        ijR = ijI = klR = klI = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            buf = lib.transpose(pqkR, out=buf)
            ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice,
                               buf, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            buf = lib.transpose(pqkI, out=buf)
            ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice,
                               buf, klI, klmosym, mokl, klslice, sym)
            lib.ddot(ijI.T, klI, 1, eri_mo, 1)
            pqkR = pqkI = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        zij = zlk = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            buf *= numpy.sqrt(coulG[p0:p1]).reshape(-1,1)
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj(), 1, eri_mo, 1)
            pqkR = pqkI = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        tao = []
        ao_loc = None
        coulG = mydf.weighted_coulG(kptj-kpti, False, mydf.gs)
        zij = zkl = buf = None
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mydf.gs, kptijkl[:2], max_memory=max_memory*.5),
                         mydf.pw_loop(mydf.gs,-kptijkl[2:], max_memory=max_memory*.5)):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij)
            buf = lib.transpose(rskR-rskI*1j, out=buf)
            zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl)
            zij *= coulG[p0:p1].reshape(-1,1)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            pqkR = pqkI = rskR = rskI = None
        return eri_mo
Exemplo n.º 14
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            lib.ddot(pqkR*coulG[p0:p1], pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI*coulG[p0:p1], pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR*coulG[p0:p1], pqkI*coulG[p0:p1], pqkR.T, pqkI.T,
                   1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
#
#       (pq|rs) = \sum_G 4\pi rho_pq rho_rs / |G+k_{pq}|^2
#       rho_pq = 1/N \sum_{Tp,Tq} \int exp(-i(G+k_{pq})*r) p(r-Tp) q(r-Tq) dr
#              = \sum_{Tq} exp(i k_q*Tq) \int exp(-i(G+k_{pq})*r) p(r) q(r-Tq) dr
# Note the k-point wrap-around for rho_rs, which leads to G+k_{pq} in FT
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = \sum_{Ts} exp(i k_s*Ts) \int exp( i(G+k_{pq})*r) r(r) s(r-Ts) dr
# rho_pq can be directly evaluated by AFT (function pw_loop)
#       rho_pq = pw_loop(k_q, G+k_{pq})
# Assuming r(r) and s(r) are real functions, rho_rs is evaluated
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = conj(\sum_{Ts} exp(-i k_s*Ts) \int exp(-i(G+k_{pq})*r) r(r) s(r-Ts) dr)
#              = conj( pw_loop(-k_s, G+k_{pq}) )
#
# TODO: For complex AO function r(r) and s(r), pw_loop function needs to be
# extended to include Gv vector in the arguments
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)
Exemplo n.º 15
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            lib.ddot(pqkR*coulG[p0:p1], pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI*coulG[p0:p1], pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR*coulG[p0:p1], pqkI*coulG[p0:p1], pqkR.T, pqkI.T,
                   1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
#
#       (pq|rs) = \sum_G 4\pi rho_pq rho_rs / |G+k_{pq}|^2
#       rho_pq = 1/N \sum_{Tp,Tq} \int exp(-i(G+k_{pq})*r) p(r-Tp) q(r-Tq) dr
#              = \sum_{Tq} exp(i k_q*Tq) \int exp(-i(G+k_{pq})*r) p(r) q(r-Tq) dr
# Note the k-point wrap-around for rho_rs, which leads to G+k_{pq} in FT
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = \sum_{Ts} exp(i k_s*Ts) \int exp( i(G+k_{pq})*r) r(r) s(r-Ts) dr
# rho_pq can be directly evaluated by AFT (function pw_loop)
#       rho_pq = pw_loop(k_q, G+k_{pq})
# Assuming r(r) and s(r) are real functions, rho_rs is evaluated
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = conj(\sum_{Ts} exp(-i k_s*Ts) \int exp(-i(G+k_{pq})*r) r(r) s(r-Ts) dr)
#              = conj( pw_loop(-k_s, G+k_{pq}) )
#
# TODO: For complex AO function r(r) and s(r), pw_loop function needs to be
# extended to include Gv vector in the arguments
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)
Exemplo n.º 16
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    warn_pbc2d_eri(mydf)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        ijR = ijI = klR = klI = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            buf = lib.transpose(pqkR, out=buf)
            ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice,
                               buf, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR*coulG[p0:p1,None], 1, eri_mo, 1)
            buf = lib.transpose(pqkI, out=buf)
            ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice,
                               buf, klI, klmosym, mokl, klslice, sym)
            lib.ddot(ijI.T, klI*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj()*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        tao = []
        ao_loc = None
        zij = zkl = buf = None
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij)
            buf = lib.transpose(rskR-rskI*1j, out=buf)
            zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl)
            zij *= coulG[p0:p1,None]
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            pqkR = pqkI = rskR = rskI = None
        return eri_mo
Exemplo n.º 17
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    eri_mo = pwdf_ao2mo.general(mydf, mo_coeffs, kptijkl, compact)

    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))
        if sym:
            eri_mo *= .5  # because we'll do +cc later

        ijR = klR = None
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            ijR, klR = _dtrans(LpqR, ijR, ijmosym, moij, ijslice,
                               j3cR, klR, klmosym, mokl, klslice, False)
            lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            if not sym:
                ijR, klR = _dtrans(j3cR, ijR, ijmosym, moij, ijslice,
                                   LpqR, klR, klmosym, mokl, klslice, False)
                lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            LpqR = LpqI = j3cR = j3cI = None
        if sym:
            eri_mo = lib.transpose_sum(eri_mo, inplace=True)
        return eri_mo

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_lk = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = buf = None
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            bufL = LpqR+LpqI*1j
            bufj = j3cR+j3cI*1j
            zij, zlk = _ztrans(bufL, zij, moij, ijslice,
                               bufj, zlk, molk, lkslice, False)
            lib.dot(zij.T, zlk.conj(), 1, eri_lk, 1)
            if not sym:
                zij, zlk = _ztrans(bufj, zij, moij, ijslice,
                                   bufL, zlk, molk, lkslice, False)
                lib.dot(zij.T, zlk.conj(), 1, eri_lk, 1)
            LpqR = LpqI = j3cR = j3cI = bufL = bufj = None
        if sym:
            eri_lk += lib.transpose(eri_lk).conj()

        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_lk = lib.transpose(eri_lk.reshape(-1,nmol,nmok), axes=(0,2,1))
        eri_mo += eri_lk.reshape(nij_pair,nlk_pair)
        return eri_mo

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        max_memory *= .5

        zij = zkl = None
        for (LpqR, LpqI, jpqR, jpqI), (LrsR, LrsI, jrsR, jrsI) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False),
                         mydf.sr_loop(kptijkl[2:], max_memory, False)):
            zij, zkl = _ztrans(LpqR+LpqI*1j, zij, moij, ijslice,
                               jrsR+jrsI*1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            zij, zkl = _ztrans(jpqR+jpqI*1j, zij, moij, ijslice,
                               LrsR+LrsI*1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            LpqR = LpqI = jpqR = jpqI = LrsR = LrsI = jrsR = jrsI = None
        return eri_mo
Exemplo n.º 18
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    warn_pbc2d_eri(mydf)
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]))

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))
        ijR = klR = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, True):
            ijR, klR = _dtrans(LpqR, ijR, ijmosym, moij, ijslice,
                               LpqR, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, sign, eri_mo, 1)
            LpqR = LpqI = None
        return eri_mo

    elif is_zero(kpti-kptk) and is_zero(kptj-kptl):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        zij = zkl = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zkl = _ztrans(buf, zij, moij, ijslice,
                               buf, zkl, mokl, klslice, sym)
            lib.dot(zij.T, zkl, sign, eri_mo, 1)
            LpqR = LpqI = buf = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj(), sign, eri_mo, 1)
            LpqR = LpqI = buf = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        nao = mo_coeffs[0].shape[0]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        blksize = int(min(max_memory*.3e6/16/nij_pair,
                          max_memory*.3e6/16/nkl_pair,
                          max_memory*.3e6/16/nao**2))
        zij = zkl = None
        for (LpqR, LpqI, sign), (LrsR, LrsI, sign1) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False, blksize),
                         mydf.sr_loop(kptijkl[2:], max_memory, False, blksize)):
            zij, zkl = _ztrans(LpqR+LpqI*1j, zij, moij, ijslice,
                               LrsR+LrsI*1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, sign, eri_mo, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eri_mo
Exemplo n.º 19
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    nao = cell.nao_nr()
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*8/1e6)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eriR = numpy.zeros((nao_pair,nao_pair))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, 1, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

    elif (abs(kpti-kptk).sum() < KPT_DIFF_TOL) and (abs(kptj-kptl).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI*1j

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, 1, eriR, eriI, 1)
            LpqR = LpqI = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for (LpqR, LpqI), (LrsR, LrsI) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False),
                         mydf.sr_loop(kptijkl[2:], max_memory, False)):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, 1, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI*1j
Exemplo n.º 20
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    warn_pbc2d_eri(mydf)
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]))

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))
        ijR = klR = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, True):
            ijR, klR = _dtrans(LpqR, ijR, ijmosym, moij, ijslice,
                               LpqR, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, sign, eri_mo, 1)
            LpqR = LpqI = None
        return eri_mo

    elif is_zero(kpti-kptk) and is_zero(kptj-kptl):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        zij = zkl = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zkl = _ztrans(buf, zij, moij, ijslice,
                               buf, zkl, mokl, klslice, sym)
            lib.dot(zij.T, zkl, sign, eri_mo, 1)
            LpqR = LpqI = buf = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = None
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj(), sign, eri_mo, 1)
            LpqR = LpqI = buf = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        nao = mo_coeffs[0].shape[0]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        blksize = int(min(max_memory*.3e6/16/nij_pair,
                          max_memory*.3e6/16/nkl_pair,
                          max_memory*.3e6/16/nao**2))
        zij = zkl = None
        for (LpqR, LpqI, sign), (LrsR, LrsI, sign1) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False, blksize),
                         mydf.sr_loop(kptijkl[2:], max_memory, False, blksize)):
            zij, zkl = _ztrans(LpqR+LpqI*1j, zij, moij, ijslice,
                               LrsR+LrsI*1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, sign, eri_mo, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eri_mo
Exemplo n.º 21
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*16/1e6)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, sign, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

    elif is_zero(kpti-kptk) and is_zero(kptj-kptl):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI*1j

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        blksize = int(max_memory*.4e6/16/nao**2)
        for (LpqR, LpqI, sign), (LrsR, LrsI, sign1) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False, blksize),
                         mydf.sr_loop(kptijkl[2:], max_memory, False, blksize)):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, sign, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI*1j
Exemplo n.º 22
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))
        ijR = klR = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            ijR, klR = _dtrans(LpqR, ijR, ijmosym, moij, ijslice,
                               LpqR, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            LpqR = LpqI = None
        return eri_mo

    elif (abs(kpti-kptk).sum() < KPT_DIFF_TOL) and (abs(kptj-kptl).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        zij = zkl = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zkl = _ztrans(buf, zij, moij, ijslice,
                               buf, zkl, mokl, klslice, sym)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            LpqR = LpqI = buf = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR+LpqI*1j
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj(), 1, eri_mo, 1)
            LpqR = LpqI = buf = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        zij = zkl = None
        for (LpqR, LpqI), (LrsR, LrsI) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False),
                         mydf.sr_loop(kptijkl[2:], max_memory, False)):
            zij, zkl = _ztrans(LpqR+LpqI*1j, zij, moij, ijslice,
                               LrsR+LrsI*1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eri_mo
Exemplo n.º 23
0
def general(mydf, mo_coeffs, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * 0.5)

    ####################
    # gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair, nkl_pair))
        sym = iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and iden_coeffs(mo_coeffs[1], mo_coeffs[3])
        ijR = klR = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            ijR, klR = _dtrans(LpqR, ijR, ijmosym, moij, ijslice, LpqR, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR, 1, eri_mo, 1)
            LpqR = LpqI = None
        return eri_mo

    elif (abs(kpti - kptk).sum() < KPT_DIFF_TOL) and (abs(kptj - kptl).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair, nkl_pair), dtype=numpy.complex)
        sym = iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and iden_coeffs(mo_coeffs[1], mo_coeffs[3])

        zij = zkl = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR + LpqI * 1j
            zij, zkl = _ztrans(buf, zij, moij, ijslice, buf, zkl, mokl, klslice, sym)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            LpqR = LpqI = buf = None
        return eri_mo

    ####################
    # (kpt) i == j == k == l != 0
    # (kpt) i == l && j == k && i != j && j != k  =>
    #
    elif (abs(kpti - kptl).sum() < KPT_DIFF_TOL) and (abs(kptj - kptk).sum() < KPT_DIFF_TOL):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair, nlk_pair), dtype=numpy.complex)
        sym = iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and iden_coeffs(mo_coeffs[1], mo_coeffs[2])

        zij = zlk = None
        for LpqR, LpqI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            buf = LpqR + LpqI * 1j
            zij, zlk = _ztrans(buf, zij, moij, ijslice, buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj(), 1, eri_mo, 1)
            LpqR = LpqI = buf = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1, nmol, nmok), axes=(0, 2, 1))
        return eri_mo.reshape(nij_pair, nlk_pair)

    ####################
    # aosym = s1, complex integrals
    #
    # If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
    # vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
    # So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
    #
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair, nkl_pair), dtype=numpy.complex)

        zij = zkl = None
        for (LpqR, LpqI), (LrsR, LrsI) in lib.izip(
            mydf.sr_loop(kptijkl[:2], max_memory, False), mydf.sr_loop(kptijkl[2:], max_memory, False)
        ):
            zij, zkl = _ztrans(LpqR + LpqI * 1j, zij, moij, ijslice, LrsR + LrsI * 1j, zkl, mokl, klslice, False)
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eri_mo
Exemplo n.º 24
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'df_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, mydf.max_memory-lib.current_memory()[0]-nao**4*16/1e6)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(LpqR.T, LpqR, sign, eriR, 1)
            LpqR = LpqI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

    elif is_zero(kpti-kptk) and is_zero(kptj-kptl):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNN(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
        return eriR + eriI*1j

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, sign in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(LpqR.T, LpqI.T, LpqR, LpqI, sign, eriR, eriI, 1)
            LpqR = LpqI = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        blksize = int(max_memory*.4e6/16/nao**2)
        for (LpqR, LpqI, sign), (LrsR, LrsI, sign1) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False, blksize),
                         mydf.sr_loop(kptijkl[2:], max_memory, False, blksize)):
            zdotNN(LpqR.T, LpqI.T, LrsR, LrsI, sign, eriR, eriI, 1)
            LpqR = LpqI = LrsR = LrsI = None
        return eriR + eriI*1j
Exemplo n.º 25
0
def get_eri(mydf, kpts=None, compact=True):
    if mydf._cderi is None:
        mydf.build()

    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    eri = pwdf_ao2mo.get_eri(mydf, kptijkl, compact=True)
    nao = cell.nao_nr()
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0] - nao**4*8/1e6) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if abs(kptijkl).sum() < KPT_DIFF_TOL:
        eri *= .5  # because we'll do +cc later
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, True):
            lib.ddot(j3cR.T, LpqR, 1, eri, 1)
            LpqR = LpqI = j3cR = j3cI = None
        eri = lib.transpose_sum(eri, inplace=True)
        if not compact:
            eri = ao2mo.restore(1, eri, nao).reshape(nao**2,-1)
        return eri

####################
# (kpt) i == j == k == l != 0
#
# (kpt) i == l && j == k && i != j && j != k  =>
# both vbar and ovlp are zero. It corresponds to the exchange integral.
#
# complex integrals, N^4 elements
    elif (abs(kpti-kptl).sum() < KPT_DIFF_TOL) and (abs(kptj-kptk).sum() < KPT_DIFF_TOL):
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        for LpqR, LpqI, j3cR, j3cI in mydf.sr_loop(kptijkl[:2], max_memory, False):
            zdotNC(j3cR.T, j3cI.T, LpqR, LpqI, 1, eriR, eriI, 1)
# eri == eri.transpose(3,2,1,0).conj()
#            zdotNC(LpqR.T, LpqI.T, j3cR, j3cI, 1, eriR, eriI, 1)
            LpqR = LpqI = j3cR = j3cI = None
# eri == eri.transpose(3,2,1,0).conj()
        eriR = lib.transpose_sum(eriR, inplace=True)
        buf = lib.transpose(eriI)
        eriI -= buf

        eriR = lib.transpose(eriR.reshape(-1,nao,nao), axes=(0,2,1), out=buf)
        eri += eriR.reshape(eri.shape)
        eriI = lib.transpose(eriI.reshape(-1,nao,nao), axes=(0,2,1), out=buf)
        eri += eriI.reshape(eri.shape)*1j
        return eri

####################
# aosym = s1, complex integrals
#
# kpti == kptj  =>  kptl == kptk
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.
#
    else:
        eriR = numpy.zeros((nao*nao,nao*nao))
        eriI = numpy.zeros((nao*nao,nao*nao))
        max_memory *= .5
        for (LpqR, LpqI, jpqR, jpqI), (LrsR, LrsI, jrsR, jrsI) in \
                lib.izip(mydf.sr_loop(kptijkl[:2], max_memory, False),
                         mydf.sr_loop(kptijkl[2:], max_memory, False)):
            zdotNN(jpqR.T, jpqI.T, LrsR, LrsI, 1, eriR, eriI, 1)
            zdotNN(LpqR.T, LpqI.T, jrsR, jrsI, 1, eriR, eriI, 1)
            LpqR = LpqI = jpqR = jpqI = LrsR = LrsI = jrsR = jrsI = None
        eri += eriR
        eri += eriI*1j
        return eri