Exemplo n.º 1
0
        def get_phi1(pcmojb):
            pcmobj.grids.build()
            mol = pcmobj.mol
            natm = mol.natm
            lmax = pcmobj.lmax

            r_vdw = pcmobj.get_atomic_radii()
            coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
                pcmobj.lebedev_order)
            ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

            fi = ddcosmo.make_fi(pcmobj, r_vdw)
            ui = 1 - fi
            ui[ui < 0] = 0
            nexposed = numpy.count_nonzero(ui == 1)
            nbury = numpy.count_nonzero(ui == 0)
            on_shell = numpy.count_nonzero(ui > 0) - nexposed

            nlm = (lmax + 1)**2
            Lmat = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
            Lmat = Lmat.reshape(natm * nlm, -1)

            cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw,
                                                       lmax)

            phi = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui, ylm_1sph)
            L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm, -1)
            psi, vmat, L_S = \
                    ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, ylm_1sph,
                                          cached_pol, L_X, Lmat)
            phi1 = ddcosmo_grad.make_phi1(pcmobj, dm, r_vdw, ui, ylm_1sph)
            phi1 = numpy.einsum('izjx,jx->iz', phi1, L_S)
            return L_S, phi, phi1
Exemplo n.º 2
0
    def build(self):
        if self.grids.coords is None:
            self.grids.build(with_non0tab=True)

        mol = self.mol
        natm = mol.natm
        lmax = self.lmax

        r_vdw = self.get_atomic_radii()
        coords_1sph, weights_1sph = make_grids_one_sphere(self.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

        fi = make_fi(self, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0
        nexposed = numpy.count_nonzero(ui == 1)
        nbury = numpy.count_nonzero(ui == 0)
        on_shell = numpy.count_nonzero(ui > 0) - nexposed
        logger.debug(self, 'Num points exposed %d', nexposed)
        logger.debug(self, 'Num points buried %d', nbury)
        logger.debug(self, 'Num points on shell %d', on_shell)

        nlm = (lmax + 1)**2
        Lmat = make_L(self, r_vdw, ylm_1sph, fi)
        Lmat = Lmat.reshape(natm * nlm, -1)

        cached_pol = cache_fake_multipoles(self.grids, r_vdw, lmax)

        self._intermediates = {
            'r_vdw': r_vdw,
            'ylm_1sph': ylm_1sph,
            'ui': ui,
            'Lmat': Lmat,
            'cached_pol': cached_pol,
        }
Exemplo n.º 3
0
    def test_psi_vmat(self):
        pcm = ddcosmo.DDCOSMO(mol)
        pcm.lmax = 2
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui<0] = 0
        grids = dft.gen_grid.Grids(mol).build()
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)

        numpy.random.seed(1)
        nao = mol.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T
        natm = mol.natm
        nlm = (pcm.lmax+1)**2
        LX = numpy.random.random((natm,nlm))

        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
        psi, vmat = ddcosmo.make_psi_vmat(pcm, dm, r_vdw, ui, grids,
                                          ylm_1sph, cached_pol, LX, L)[:2]
        psi_ref = make_psi(pcm.mol, dm, r_vdw, pcm.lmax)
        self.assertAlmostEqual(abs(psi_ref - psi).max(), 0, 12)

        LS = numpy.linalg.solve(L.T.reshape(natm*nlm,-1),
                                psi_ref.ravel()).reshape(natm,nlm)
        vmat_ref = make_vmat(pcm, r_vdw, pcm.lebedev_order, pcm.lmax, LX, LS)
        self.assertAlmostEqual(abs(vmat_ref - vmat).max(), 0, 12)
Exemplo n.º 4
0
def make_psi(mol, dm, r_vdw, lmax):
    grids = dft.gen_grid.Grids(mol)
    atom_grids_tab = grids.gen_atomic_grids(mol)
    grids.build()

    ao = dft.numint.eval_ao(mol, grids.coords)
    den = dft.numint.eval_rho(mol, ao, dm)
    den *= grids.weights
    natm = mol.natm
    nlm = (lmax+1)**2
    psi = numpy.empty((natm,nlm))
    i1 = 0
    for ia in range(natm):
        xnj, w = atom_grids_tab[mol.atom_symbol(ia)]
        i0, i1 = i1, i1 + w.size
        r = lib.norm(xnj, axis=1)
        snj = xnj/r.reshape(-1,1)
        Ys = sph.real_sph_vec(snj, lmax, True)
        p1 = 0
        for l in range(lmax+1):
            fac = 4*numpy.pi/(l*2+1)
            p0, p1 = p1, p1 + (l*2+1)
            rr = numpy.zeros_like(r)
            rr[r<=r_vdw[ia]] = r[r<=r_vdw[ia]]**l / r_vdw[ia]**(l+1)
            rr[r> r_vdw[ia]] = r_vdw[ia]**l / r[r>r_vdw[ia]]**(l+1)
            psi[ia,p0:p1] = -fac * numpy.einsum('n,n,mn->m', den[i0:i1], rr, Ys[l])
        psi[ia,0] += numpy.sqrt(4*numpy.pi)/r_vdw[ia] * mol.atom_charge(ia)
    return psi
Exemplo n.º 5
0
    def test_psi_vmat(self):
        pcm = ddcosmo.DDCOSMO(mol)
        pcm.lmax = 2
        pcm.eps = 0
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0
        grids = dft.gen_grid.Grids(mol).build()
        pcm.grids = grids
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)

        numpy.random.seed(1)
        nao = mol.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        natm = mol.natm
        nlm = (pcm.lmax + 1)**2
        LX = numpy.random.random((natm, nlm))

        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
        psi, vmat = ddcosmo.make_psi_vmat(pcm, dm, r_vdw, ui, ylm_1sph,
                                          cached_pol, LX, L)[:2]
        psi_ref = make_psi(pcm.mol, dm, r_vdw, pcm.lmax)
        self.assertAlmostEqual(abs(psi_ref - psi).max(), 0, 12)

        LS = numpy.linalg.solve(L.reshape(natm * nlm, -1).T,
                                psi_ref.ravel()).reshape(natm, nlm)
        vmat_ref = make_vmat(pcm, r_vdw, pcm.lebedev_order, pcm.lmax, LX, LS)
        self.assertAlmostEqual(abs(vmat_ref - vmat).max(), 0, 12)
Exemplo n.º 6
0
        def get_phi1(pcmojb):
            pcmobj.grids.build()
            mol = pcmobj.mol
            natm = mol.natm
            lmax = pcmobj.lmax

            r_vdw = pcmobj.get_atomic_radii()
            coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
            ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

            fi = ddcosmo.make_fi(pcmobj, r_vdw)
            ui = 1 - fi
            ui[ui<0] = 0
            nexposed = numpy.count_nonzero(ui==1)
            nbury = numpy.count_nonzero(ui==0)
            on_shell = numpy.count_nonzero(ui>0) - nexposed

            nlm = (lmax+1)**2
            Lmat = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
            Lmat = Lmat.reshape(natm*nlm,-1)

            cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

            phi = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui)
            L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm,-1)
            psi, vmat, L_S = \
                    ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                                          cached_pol, L_X, Lmat)
            phi1 = ddcosmo_grad.make_phi1(pcmobj, dm, r_vdw, ui)
            phi1 = numpy.einsum('izjx,jx->iz', phi1, L_S)
            return L_S, phi, phi1
Exemplo n.º 7
0
def make_psi(mol, dm, r_vdw, lmax):
    grids = dft.gen_grid.Grids(mol)
    atom_grids_tab = grids.gen_atomic_grids(mol)
    grids.build()

    ao = dft.numint.eval_ao(mol, grids.coords)
    den = dft.numint.eval_rho(mol, ao, dm)
    den *= grids.weights
    natm = mol.natm
    nlm = (lmax + 1)**2
    psi = numpy.empty((natm, nlm))
    i1 = 0
    for ia in range(natm):
        xnj, w = atom_grids_tab[mol.atom_symbol(ia)]
        i0, i1 = i1, i1 + w.size
        r = lib.norm(xnj, axis=1)
        snj = xnj / r.reshape(-1, 1)
        Ys = sph.real_sph_vec(snj, lmax, True)
        p1 = 0
        for l in range(lmax + 1):
            fac = 4 * numpy.pi / (l * 2 + 1)
            p0, p1 = p1, p1 + (l * 2 + 1)
            rr = numpy.zeros_like(r)
            rr[r <= r_vdw[ia]] = r[r <= r_vdw[ia]]**l / r_vdw[ia]**(l + 1)
            rr[r > r_vdw[ia]] = r_vdw[ia]**l / r[r > r_vdw[ia]]**(l + 1)
            psi[ia, p0:p1] = -fac * numpy.einsum('n,n,mn->m', den[i0:i1], rr,
                                                 Ys[l])
        psi[ia,
            0] += numpy.sqrt(4 * numpy.pi) / r_vdw[ia] * mol.atom_charge(ia)
    return psi
Exemplo n.º 8
0
def gen_ddcosmo_solver(pcmobj, verbose=None):
    '''Generate ddcosmo function to compute energy and potential matrix
    '''
    mol = pcmobj.mol
    mm_mol = pcmobj.mm_mol

    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    natm = mol.natm
    natm_mm = 0
    if mm_mol is not None:
        natm_mm = mm_mol.natm
    natm_tot = natm + natm_mm

    lmax = pcmobj.lmax

    r_vdw = pcmobj.get_atomic_radii()
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui < 0] = 0
    nexposed = numpy.count_nonzero(ui == 1)
    nbury = numpy.count_nonzero(ui == 0)
    on_shell = numpy.count_nonzero(ui > 0) - nexposed
    logger.debug(pcmobj, 'Num points exposed %d', nexposed)
    logger.debug(pcmobj, 'Num points buried %d', nbury)
    logger.debug(pcmobj, 'Num points on shell %d', on_shell)

    nlm = (lmax + 1)**2
    Lmat = make_L(pcmobj, r_vdw, ylm_1sph, fi)
    Lmat = Lmat.reshape(natm * nlm, -1)

    cached_pol = cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    def gen_vind(dm):
        pcmobj._dm = dm
        if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
            # spin-traced DM for UHF or ROHF
            dm = dm[0] + dm[1]

        phi = make_phi(pcmobj, dm, r_vdw, ui)[:natm]
        # Lmax(natm*nlm,natm*nlm) * L_X(natm*nlm) = phi(natm*nlm)
        L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm, -1)
        psi, vmat = make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids,
                                  ylm_1sph, cached_pol, L_X, Lmat)[:2]
        dielectric = pcmobj.eps
        if dielectric > 0:
            f_epsilon = (dielectric - 1.) / dielectric
        else:
            f_epsilon = 1
        pcmobj.epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, L_X)
        pcmobj.vpcm = .5 * f_epsilon * vmat
        return pcmobj.epcm, pcmobj.vpcm

    return gen_vind
Exemplo n.º 9
0
    def test_solvent_nuc(self):
        def get_nuc(mol):
            pcm = ddcosmo.DDCOSMO(mol)
            pcm.lmax = 2
            pcm.eps = 0
            natm = mol.natm
            nao = mol.nao
            nlm = (pcm.lmax + 1)**2
            r_vdw = ddcosmo.get_atomic_radii(pcm)
            fi = ddcosmo.make_fi(pcm, r_vdw)
            ui = 1 - fi
            ui[ui < 0] = 0
            pcm.grids = grids = dft.gen_grid.Grids(mol).run(level=0)
            coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
                pcm.lebedev_order)
            ylm_1sph = numpy.vstack(
                sph.real_sph_vec(coords_1sph, pcm.lmax, True))
            cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
            L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
            return nuc_part(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)

        pcm = ddcosmo.DDCOSMO(mol0)
        pcm.lmax = 2
        pcm.eps = 0
        natm = mol0.natm
        nao = mol0.nao
        nlm = (pcm.lmax + 1)**2
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0
        pcm.grids = grids = dft.gen_grid.Grids(mol0).run(level=0)
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
        dvmat = nuc_part1(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)

        vmat1 = get_nuc(mol1)
        vmat2 = get_nuc(mol2)
        self.assertAlmostEqual(
            abs((vmat2 - vmat1) / dx - dvmat[0, 2]).max(), 0, 8)

        nao = mol0.nao
        numpy.random.seed(19)
        dm = numpy.random.random((nao, nao))
        vref = pcm._get_vind(dm)[1]
        vmat = 0.5 * get_nuc(mol0)
        vmat += pcm._B_dot_x(dm)
        self.assertAlmostEqual(abs(vmat - vref).max(), 0, 14)

        dm1 = numpy.random.random((2, nao, nao))
        de = _ddcosmo_tdscf_grad._grad_ne(pcm, dm1, r_vdw, ui, ylm_1sph,
                                          cached_pol, L)
        ref = numpy.einsum('azij,nij->naz', dvmat, dm1)
        self.assertAlmostEqual(abs(de - ref).max(), 0, 12)
Exemplo n.º 10
0
def make_L(pcmobj, r_vdw, lebedev_order, lmax, eta=0.1):
    mol = pcmobj.mol
    natm = mol.natm
    nlm = (lmax + 1)**2

    leb_coords, leb_weights = ddcosmo.make_grids_one_sphere(lebedev_order)
    nleb_grid = leb_weights.size
    atom_coords = mol.atom_coords()
    Ylm_sphere = numpy.vstack(sph.real_sph_vec(leb_coords, lmax, True))
    fi = ddcosmo.make_fi(pcmobj, r_vdw)

    L_diag = numpy.zeros((natm, nlm))
    p1 = 0
    for l in range(lmax + 1):
        p0, p1 = p1, p1 + (l * 2 + 1)
        L_diag[:, p0:p1] = 4 * numpy.pi / (l * 2 + 1)
    L_diag /= r_vdw.reshape(-1, 1)
    L = numpy.diag(L_diag.ravel()).reshape(natm, nlm, natm, nlm)
    for ja in range(natm):
        for ka in range(natm):
            if ja == ka:
                continue
            vjk = r_vdw[ja] * leb_coords + atom_coords[ja] - atom_coords[ka]
            v = lib.norm(vjk, axis=1)
            tjk = v / r_vdw[ka]
            sjk = vjk / v.reshape(-1, 1)
            Ys = sph.real_sph_vec(sjk, lmax, True)
            # scale the weight, see JCTC 9, 3637, Eq (16)
            wjk = pcmobj.regularize_xt(tjk, eta, r_vdw[ka])
            wjk[fi[ja] > 1] /= fi[ja, fi[ja] > 1]
            tt = numpy.ones_like(wjk)
            p1 = 0
            for l in range(lmax + 1):
                fac = 4 * numpy.pi / (l * 2 + 1) / r_vdw[ka]
                p0, p1 = p1, p1 + (l * 2 + 1)
                val = numpy.einsum('n,xn,n,mn->xm', leb_weights, Ylm_sphere,
                                   wjk * tt, Ys[l])
                L[ja, :, ka, p0:p1] += -fac * val
                tt *= tjk
    return L.reshape(natm * nlm, natm * nlm)
Exemplo n.º 11
0
def make_vmat(pcm, r_vdw, lebedev_order, lmax, LX, LS):
    mol = pcm.mol
    grids = dft.gen_grid.Grids(mol)
    atom_grids_tab = grids.gen_atomic_grids(mol)
    grids.build()
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(lebedev_order)
    ao = dft.numint.eval_ao(mol, grids.coords)
    nao = ao.shape[1]
    vmat = numpy.zeros((nao,nao))
    i1 = 0
    for ia in range(mol.natm):
        xnj, w = atom_grids_tab[mol.atom_symbol(ia)]
        i0, i1 = i1, i1 + w.size
        r = lib.norm(xnj, axis=1)
        Ys = sph.real_sph_vec(xnj/r.reshape(-1,1), lmax, True)
        p1 = 0
        for l in range(lmax+1):
            fac = 4*numpy.pi/(l*2+1)
            p0, p1 = p1, p1 + (l*2+1)
            rr = numpy.zeros_like(r)
            rr[r<=r_vdw[ia]] = r[r<=r_vdw[ia]]**l / r_vdw[ia]**(l+1)
            rr[r> r_vdw[ia]] = r_vdw[ia]**l / r[r>r_vdw[ia]]**(l+1)
            eta_nj = fac * numpy.einsum('n,mn,m->n', rr, Ys[l], LX[ia,p0:p1])
            vmat -= numpy.einsum('n,np,nq->pq', grids.weights[i0:i1] * eta_nj,
                                 ao[i0:i1], ao[i0:i1])

    atom_coords = mol.atom_coords()
    Ylm_sphere = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))
    fi = ddcosmo.make_fi(pcm, r_vdw)
    ui = 1 - fi
    ui[ui<0] = 0
    xi_nj = numpy.einsum('n,jn,xn,jx->jn', weights_1sph, ui, Ylm_sphere, LS)

    pmol = mol.copy()
    for ia in range(mol.natm):
        for i,c in enumerate(coords_1sph):
            r = atom_coords[ia] + r_vdw[ia] * c
            pmol.set_rinv_orig(r)
            vmat += pmol.intor('int1e_rinv') * xi_nj[ia,i]
    return vmat
Exemplo n.º 12
0
def make_vmat(pcm, r_vdw, lebedev_order, lmax, LX, LS):
    mol = pcm.mol
    grids = dft.gen_grid.Grids(mol)
    atom_grids_tab = grids.gen_atomic_grids(mol)
    grids.build()
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(lebedev_order)
    ao = dft.numint.eval_ao(mol, grids.coords)
    nao = ao.shape[1]
    vmat = numpy.zeros((nao, nao))
    i1 = 0
    for ia in range(mol.natm):
        xnj, w = atom_grids_tab[mol.atom_symbol(ia)]
        i0, i1 = i1, i1 + w.size
        r = lib.norm(xnj, axis=1)
        Ys = sph.real_sph_vec(xnj / r.reshape(-1, 1), lmax, True)
        p1 = 0
        for l in range(lmax + 1):
            fac = 4 * numpy.pi / (l * 2 + 1)
            p0, p1 = p1, p1 + (l * 2 + 1)
            rr = numpy.zeros_like(r)
            rr[r <= r_vdw[ia]] = r[r <= r_vdw[ia]]**l / r_vdw[ia]**(l + 1)
            rr[r > r_vdw[ia]] = r_vdw[ia]**l / r[r > r_vdw[ia]]**(l + 1)
            eta_nj = fac * numpy.einsum('n,mn,m->n', rr, Ys[l], LX[ia, p0:p1])
            vmat -= numpy.einsum('n,np,nq->pq', grids.weights[i0:i1] * eta_nj,
                                 ao[i0:i1], ao[i0:i1])

    atom_coords = mol.atom_coords()
    Ylm_sphere = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))
    fi = ddcosmo.make_fi(pcm, r_vdw)
    ui = 1 - fi
    ui[ui < 0] = 0
    xi_nj = numpy.einsum('n,jn,xn,jx->jn', weights_1sph, ui, Ylm_sphere, LS)

    pmol = mol.copy()
    for ia in range(mol.natm):
        for i, c in enumerate(coords_1sph):
            r = atom_coords[ia] + r_vdw[ia] * c
            pmol.set_rinv_orig(r)
            vmat += pmol.intor('int1e_rinv') * xi_nj[ia, i]
    return vmat
Exemplo n.º 13
0
def rsphar_vec(rvecs, lmax):
    """
    Computes (all) real spherical harmonics up to the angular momentum lmax
    Args:
      rvecs : A list of Cartesian coordinates defining the theta and phi angles for spherical harmonic
      lmax  : Integer, maximal angular momentum
    Result:
      2-d numpy array of float64 elements with all spherical harmonics stored in order 0,0; 1,-1; 1,0; 1,+1 ... lmax,lmax, althogether 0 : (lmax+1)**2 elements.
    """
    assert lmax>-1
    ylm = sph.real_sph_vec(rvecs, lmax)
    res = np.vstack(ylm).T.copy('C')
    return res
Exemplo n.º 14
0
def make_L(pcmobj, r_vdw, lebedev_order, lmax, eta=0.1):
    mol = pcmobj.mol
    natm = mol.natm
    nlm = (lmax+1)**2

    leb_coords, leb_weights = ddcosmo.make_grids_one_sphere(lebedev_order)
    nleb_grid = leb_weights.size
    atom_coords = mol.atom_coords()
    Ylm_sphere = numpy.vstack(sph.real_sph_vec(leb_coords, lmax, True))
    fi = ddcosmo.make_fi(pcmobj, r_vdw)

    L_diag = numpy.zeros((natm,nlm))
    p1 = 0
    for l in range(lmax+1):
        p0, p1 = p1, p1 + (l*2+1)
        L_diag[:,p0:p1] = 4*numpy.pi/(l*2+1)
    L_diag /= r_vdw.reshape(-1,1)
    L = numpy.diag(L_diag.ravel()).reshape(natm,nlm,natm,nlm)
    for ja in range(natm):
        for ka in range(natm):
            if ja == ka:
                continue
            vjk = r_vdw[ja] * leb_coords + atom_coords[ja] - atom_coords[ka]
            v = lib.norm(vjk, axis=1)
            tjk = v / r_vdw[ka]
            sjk = vjk / v.reshape(-1,1)
            Ys = sph.real_sph_vec(sjk, lmax, True)
            # scale the weight, see JCTC 9, 3637, Eq (16)
            wjk = pcmobj.regularize_xt(tjk, eta, r_vdw[ka])
            wjk[fi[ja]>1] /= fi[ja,fi[ja]>1]
            tt = numpy.ones_like(wjk)
            p1 = 0
            for l in range(lmax+1):
                fac = 4*numpy.pi/(l*2+1) / r_vdw[ka]
                p0, p1 = p1, p1 + (l*2+1)
                val = numpy.einsum('n,xn,n,mn->xm', leb_weights, Ylm_sphere, wjk*tt, Ys[l])
                L[ja,:,ka,p0:p1] += -fac * val
                tt *= tjk
    return L.reshape(natm*nlm,natm*nlm)
Exemplo n.º 15
0
    def test_L_x(self):
        pcm = ddcosmo.DDCOSMO(mol)
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        n = mol.natm * (pcm.lmax+1)**2
        Lref = make_L(pcm, r_vdw, pcm.lebedev_order, pcm.lmax, pcm.eta).reshape(n,n)

        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        fi = ddcosmo.make_fi(pcm, r_vdw)
        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi).reshape(n,n)

        numpy.random.seed(1)
        x = numpy.random.random(n)
        self.assertTrue(abs(Lref.dot(n)-L.dot(n)).max() < 1e-12)
Exemplo n.º 16
0
def gen_ddcosmo_solver(pcmobj, verbose=None):
    '''Generate ddcosmo function to compute energy and potential matrix
    '''
    mol = pcmobj.mol
    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    natm = mol.natm
    lmax = pcmobj.lmax

    r_vdw = pcmobj.get_atomic_radii()
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui<0] = 0
    nexposed = numpy.count_nonzero(ui==1)
    nbury = numpy.count_nonzero(ui==0)
    on_shell = numpy.count_nonzero(ui>0) - nexposed
    logger.debug(pcmobj, 'Num points exposed %d', nexposed)
    logger.debug(pcmobj, 'Num points buried %d', nbury)
    logger.debug(pcmobj, 'Num points on shell %d', on_shell)

    nlm = (lmax+1)**2
    Lmat = make_L(pcmobj, r_vdw, ylm_1sph, fi)
    Lmat = Lmat.reshape(natm*nlm,-1)

    cached_pol = cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    def gen_vind(dm):
        pcmobj._dm = dm
        if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
            # spin-traced DM for UHF or ROHF
            dm = dm[0] + dm[1]

        phi = make_phi(pcmobj, dm, r_vdw, ui)
        L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm,-1)
        psi, vmat = make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                                  cached_pol, L_X, Lmat)[:2]
        dielectric = pcmobj.eps
        if dielectric > 0:
            f_epsilon = (dielectric-1.)/dielectric
        else:
            f_epsilon = 1
        pcmobj.epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, L_X)
        pcmobj.vpcm = .5 * f_epsilon * vmat
        return pcmobj.epcm, pcmobj.vpcm
    return gen_vind
Exemplo n.º 17
0
def make_phi(pcmobj, dm, r_vdw, ui):
    mol = pcmobj.mol
    natm = mol.natm
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    ngrid_1sph = coords_1sph.shape[0]

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        dm = dm[0] + dm[1]
    tril_dm = lib.pack_tril(dm + dm.T)
    nao = dm.shape[0]
    diagidx = numpy.arange(nao)
    diagidx = diagidx * (diagidx + 1) // 2 + diagidx
    tril_dm[diagidx] *= .5

    atom_coords = mol.atom_coords()
    atom_charges = mol.atom_charges()

    extern_point_idx = ui > 0
    cav_coords = (atom_coords.reshape(natm, 1, 3) +
                  numpy.einsum('r,gx->rgx', r_vdw, coords_1sph))

    v_phi = numpy.empty((natm, ngrid_1sph))
    for ia in range(natm):
        # Note (-) sign is not applied to atom_charges, because (-) is explicitly
        # included in rhs and L matrix
        d_rs = atom_coords.reshape(-1, 1, 3) - cav_coords[ia]
        v_phi[ia] = numpy.einsum('z,zp->p', atom_charges,
                                 1. / lib.norm(d_rs, axis=2))

    max_memory = pcmobj.max_memory - lib.current_memory()[0]
    blksize = int(max(max_memory * 1e6 / 8 / nao**2, 400))

    cav_coords = cav_coords[extern_point_idx]
    v_phi_e = numpy.empty(cav_coords.shape[0])
    int3c2e = mol._add_suffix('int3c2e')
    cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e)
    for i0, i1 in lib.prange(0, cav_coords.shape[0], blksize):
        fakemol = gto.fakemol_for_charges(cav_coords[i0:i1])
        v_nj = df.incore.aux_e2(mol,
                                fakemol,
                                intor=int3c2e,
                                aosym='s2ij',
                                cintopt=cintopt)
        v_phi_e[i0:i1] = numpy.einsum('x,xk->k', tril_dm, v_nj)
    v_phi[extern_point_idx] -= v_phi_e

    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    phi = -numpy.einsum('n,xn,jn,jn->jx', weights_1sph, ylm_1sph, ui, v_phi)
    return phi
Exemplo n.º 18
0
    def test_B_dot_x(self):
        pcm = ddcosmo.DDCOSMO(mol)
        pcm.lmax = 2
        pcm.eps = 0
        natm = mol.natm
        nao = mol.nao
        nlm = (pcm.lmax + 1)**2
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0
        grids = dft.gen_grid.Grids(mol).run(level=0)
        pcm.grids = grids
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
        B = make_B(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)

        numpy.random.seed(19)
        dm = numpy.random.random((2, nao, nao))
        Bx = numpy.einsum('ijkl,xkl->xij', B, dm)

        phi = ddcosmo.make_phi(pcm, dm, r_vdw, ui, ylm_1sph, with_nuc=False)
        Xvec = numpy.linalg.solve(L.reshape(natm * nlm, -1),
                                  phi.reshape(-1, natm * nlm).T)
        Xvec = Xvec.reshape(natm, nlm, -1).transpose(2, 0, 1)
        psi, vref, LS = ddcosmo.make_psi_vmat(pcm,
                                              dm,
                                              r_vdw,
                                              ui,
                                              ylm_1sph,
                                              cached_pol,
                                              Xvec,
                                              L,
                                              with_nuc=False)
        self.assertAlmostEqual(abs(Bx - vref).max(), 0, 12)
        e1 = numpy.einsum('nij,nij->n', psi, Xvec)
        e2 = numpy.einsum('nij,nij->n', phi, LS)
        e3 = numpy.einsum('nij,nij->n', dm, vref) * .5
        self.assertAlmostEqual(abs(e1 - e2).max(), 0, 12)
        self.assertAlmostEqual(abs(e1 - e3).max(), 0, 12)

        vmat = pcm._B_dot_x(dm)
        self.assertEqual(vmat.shape, (2, nao, nao))
        self.assertAlmostEqual(abs(vmat - vref * .5).max(), 0, 12)
        self.assertAlmostEqual(lib.fp(vmat), -17.383712106418606, 12)
Exemplo n.º 19
0
def gen_ddpcm_solver(pcmobj, verbose=None):
    mol = pcmobj.mol
    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    natm = mol.natm
    lmax = pcmobj.lmax

    r_vdw = ddcosmo.get_atomic_radii(pcmobj)
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
        pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = ddcosmo.make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui < 0] = 0
    nexposed = numpy.count_nonzero(ui == 1)
    nbury = numpy.count_nonzero(ui == 0)
    on_shell = numpy.count_nonzero(ui > 0) - nexposed
    logger.debug(pcmobj, 'Num points exposed %d', nexposed)
    logger.debug(pcmobj, 'Num points buried %d', nbury)
    logger.debug(pcmobj, 'Num points on shell %d', on_shell)

    nlm = (lmax + 1)**2
    Lmat = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
    Lmat = Lmat.reshape(natm * nlm, -1)

    Amat = make_A(pcmobj, r_vdw, ylm_1sph, ui).reshape(natm * nlm, -1)
    fac = 2 * numpy.pi * (pcmobj.eps + 1) / (pcmobj.eps - 1)
    A_diele = Amat + fac * numpy.eye(natm * nlm)
    A_inf = Amat + 2 * numpy.pi * numpy.eye(natm * nlm)

    cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    def gen_vind(dm):
        phi = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui)
        phi = numpy.linalg.solve(A_diele, A_inf.dot(phi.ravel()))

        Xvec = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm, -1)
        psi, vmat = ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids,
                                          ylm_1sph, cached_pol, Xvec, Lmat)[:2]
        dielectric = pcmobj.eps
        f_epsilon = (dielectric - 1.) / dielectric
        epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, Xvec)
        vpcm = .5 * f_epsilon * vmat
        return epcm, vpcm

    return gen_vind
Exemplo n.º 20
0
    def test_L_x(self):
        pcm = ddcosmo.DDCOSMO(mol)
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        n = mol.natm * (pcm.lmax + 1)**2
        Lref = make_L(pcm, r_vdw, pcm.lebedev_order, pcm.lmax,
                      pcm.eta).reshape(n, n)

        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        fi = ddcosmo.make_fi(pcm, r_vdw)
        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi).reshape(n, n)

        numpy.random.seed(1)
        x = numpy.random.random(n)
        self.assertTrue(abs(Lref.dot(n) - L.dot(n)).max() < 1e-12)
Exemplo n.º 21
0
    def test_L1(self):
        pcmobj = ddcosmo.DDCOSMO(mol0)
        r_vdw = pcmobj.get_atomic_radii()
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))

        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L1 = ddcosmo_grad.make_L1(pcmobj, r_vdw, ylm_1sph, fi)

        pcmobj = ddcosmo.DDCOSMO(mol1)
        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L_1 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)

        pcmobj = ddcosmo.DDCOSMO(mol2)
        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L_2 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
        self.assertAlmostEqual(abs((L_2-L_1)/dx - L1[0,2]).max(), 0, 7)
Exemplo n.º 22
0
    def test_L1(self):
        pcmobj = ddcosmo.DDCOSMO(mol0)
        r_vdw = pcmobj.get_atomic_radii()
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))

        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L1 = ddcosmo_grad.make_L1(pcmobj, r_vdw, ylm_1sph, fi)

        pcmobj = ddcosmo.DDCOSMO(mol1)
        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L_1 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)

        pcmobj = ddcosmo.DDCOSMO(mol2)
        fi = ddcosmo.make_fi(pcmobj, r_vdw)
        L_2 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
        self.assertAlmostEqual(abs((L_2-L_1)/dx - L1[0,2]).max(), 0, 7)
Exemplo n.º 23
0
def gen_ddpcm_solver(pcmobj, verbose=None):
    mol = pcmobj.mol
    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    natm = mol.natm
    lmax = pcmobj.lmax

    r_vdw = ddcosmo.get_atomic_radii(pcmobj)
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = ddcosmo.make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui<0] = 0
    nexposed = numpy.count_nonzero(ui==1)
    nbury = numpy.count_nonzero(ui==0)
    on_shell = numpy.count_nonzero(ui>0) - nexposed
    logger.debug(pcmobj, 'Num points exposed %d', nexposed)
    logger.debug(pcmobj, 'Num points buried %d', nbury)
    logger.debug(pcmobj, 'Num points on shell %d', on_shell)

    nlm = (lmax+1)**2
    Lmat = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
    Lmat = Lmat.reshape(natm*nlm,-1)

    Amat = make_A(pcmobj, r_vdw, ylm_1sph, ui).reshape(natm*nlm,-1)
    fac = 2*numpy.pi * (pcmobj.eps+1) / (pcmobj.eps-1)
    A_diele = Amat + fac * numpy.eye(natm*nlm)
    A_inf = Amat + 2*numpy.pi * numpy.eye(natm*nlm)

    cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    def gen_vind(dm):
        phi = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui)
        phi = numpy.linalg.solve(A_diele, A_inf.dot(phi.ravel()))

        L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm,-1)
        psi, vmat = ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids,
                                          ylm_1sph, cached_pol, L_X, Lmat)[:2]
        dielectric = pcmobj.eps
        f_epsilon = (dielectric-1.)/dielectric
        epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, L_X)
        return epcm, .5 * f_epsilon * vmat
    return gen_vind
Exemplo n.º 24
0
    def test_phi(self):
        pcm = ddcosmo.DDCOSMO(mol)
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui<0] = 0

        numpy.random.seed(1)
        nao = mol.nao_nr()
        dm = numpy.random.random((nao,nao))
        dm = dm + dm.T

        v_phi = make_v_phi(mol, dm, r_vdw, pcm.lebedev_order)
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        phi = -numpy.einsum('n,xn,jn,jn->jx', weights_1sph, ylm_1sph, ui, v_phi)
        phi1 = ddcosmo.make_phi(pcm, dm, r_vdw, ui)
        self.assertTrue(abs(phi - phi1).max() < 1e-12)
Exemplo n.º 25
0
def kernel(pcmobj, dm, verbose=None):
    mol = pcmobj.mol
    natm = mol.natm
    lmax = pcmobj.lmax
    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        # UHF density matrix
        dm = dm[0] + dm[1]

    r_vdw = ddcosmo.get_atomic_radii(pcmobj)
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
        pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = ddcosmo.make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui < 0] = 0

    cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    nlm = (lmax + 1)**2
    L0 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
    L0 = L0.reshape(natm * nlm, -1)
    L1 = make_L1(pcmobj, r_vdw, ylm_1sph, fi)

    phi0 = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui)
    phi1 = make_phi1(pcmobj, dm, r_vdw, ui)
    L0_X = numpy.linalg.solve(L0, phi0.ravel()).reshape(natm, -1)
    psi0, vmat, L0_S = \
            ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                                  cached_pol, L0_X, L0)
    e_psi1 = make_e_psi1(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                         cached_pol, L0_X, L0)
    dielectric = pcmobj.eps
    if dielectric > 0:
        f_epsilon = (dielectric - 1.) / dielectric
    else:
        f_epsilon = 1
    de = .5 * f_epsilon * e_psi1
    de += .5 * f_epsilon * numpy.einsum('jx,azjx->az', L0_S, phi1)
    de -= .5 * f_epsilon * numpy.einsum('aziljm,il,jm->az', L1, L0_S, L0_X)
    return de
Exemplo n.º 26
0
def make_phi(pcmobj, dm, r_vdw, ui):
    mol = pcmobj.mol
    natm = mol.natm
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    ngrid_1sph = coords_1sph.shape[0]

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        dm = dm[0] + dm[1]
    tril_dm = lib.pack_tril(dm+dm.T)
    nao = dm.shape[0]
    diagidx = numpy.arange(nao)
    diagidx = diagidx*(diagidx+1)//2 + diagidx
    tril_dm[diagidx] *= .5

    atom_coords = mol.atom_coords()
    atom_charges = mol.atom_charges()

    extern_point_idx = ui > 0
    cav_coords = (atom_coords.reshape(natm,1,3)
                  + numpy.einsum('r,gx->rgx', r_vdw, coords_1sph))

    v_phi = numpy.empty((natm,ngrid_1sph))
    for ia in range(natm):
# Note (-) sign is not applied to atom_charges, because (-) is explicitly
# included in rhs and L matrix
        d_rs = atom_coords.reshape(-1,1,3) - cav_coords[ia]
        v_phi[ia] = numpy.einsum('z,zp->p', atom_charges, 1./lib.norm(d_rs,axis=2))

    max_memory = pcmobj.max_memory - lib.current_memory()[0]
    blksize = int(max(max_memory*1e6/8/nao**2, 400))

    cav_coords = cav_coords[extern_point_idx]
    v_phi_e = numpy.empty(cav_coords.shape[0])
    int3c2e = mol._add_suffix('int3c2e')
    for i0, i1 in lib.prange(0, cav_coords.shape[0], blksize):
        fakemol = gto.fakemol_for_charges(cav_coords[i0:i1])
        v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e, aosym='s2ij')
        v_phi_e[i0:i1] = numpy.einsum('x,xk->k', tril_dm, v_nj)
    v_phi[extern_point_idx] -= v_phi_e

    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    phi = -numpy.einsum('n,xn,jn,jn->jx', weights_1sph, ylm_1sph, ui, v_phi)
    return phi
Exemplo n.º 27
0
def kernel(pcmobj, dm, verbose=None):
    mol = pcmobj.mol
    natm = mol.natm
    lmax = pcmobj.lmax
    if pcmobj.grids.coords is None:
        pcmobj.grids.build(with_non0tab=True)

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        # UHF density matrix
        dm = dm[0] + dm[1]

    r_vdw = ddcosmo.get_atomic_radii(pcmobj)
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True))

    fi = ddcosmo.make_fi(pcmobj, r_vdw)
    ui = 1 - fi
    ui[ui<0] = 0

    cached_pol = ddcosmo.cache_fake_multipoles(pcmobj.grids, r_vdw, lmax)

    nlm = (lmax+1)**2
    L0 = ddcosmo.make_L(pcmobj, r_vdw, ylm_1sph, fi)
    L0 = L0.reshape(natm*nlm,-1)
    L1 = make_L1(pcmobj, r_vdw, ylm_1sph, fi)

    phi0 = ddcosmo.make_phi(pcmobj, dm, r_vdw, ui)
    phi1 = make_phi1(pcmobj, dm, r_vdw, ui)
    L0_X = numpy.linalg.solve(L0, phi0.ravel()).reshape(natm,-1)
    psi0, vmat, L0_S = \
            ddcosmo.make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                                  cached_pol, L0_X, L0)
    e_psi1 = make_e_psi1(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph,
                         cached_pol, L0_X, L0)
    dielectric = pcmobj.eps
    if dielectric > 0:
        f_epsilon = (dielectric-1.)/dielectric
    else:
        f_epsilon = 1
    de = .5 * f_epsilon * e_psi1
    de+= .5 * f_epsilon * numpy.einsum('jx,azjx->az', L0_S, phi1)
    de-= .5 * f_epsilon * numpy.einsum('aziljm,il,jm->az', L1, L0_S, L0_X)
    return de
Exemplo n.º 28
0
 def getB(mol):
     pcm = ddcosmo.DDCOSMO(mol)
     pcm.lmax = 2
     pcm.eps = 0
     natm = mol.natm
     nao = mol.nao
     nlm = (pcm.lmax + 1)**2
     r_vdw = ddcosmo.get_atomic_radii(pcm)
     fi = ddcosmo.make_fi(pcm, r_vdw)
     ui = 1 - fi
     ui[ui < 0] = 0
     pcm.grids = grids = dft.gen_grid.Grids(mol).run(level=0)
     coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
         pcm.lebedev_order)
     ylm_1sph = numpy.vstack(
         sph.real_sph_vec(coords_1sph, pcm.lmax, True))
     cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
     L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
     return make_B(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)
Exemplo n.º 29
0
    def test_phi(self):
        pcm = ddcosmo.DDCOSMO(mol)
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0

        numpy.random.seed(1)
        nao = mol.nao_nr()
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T

        v_phi = make_v_phi(mol, dm, r_vdw, pcm.lebedev_order)
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        phi = -numpy.einsum('n,xn,jn,jn->jx', weights_1sph, ylm_1sph, ui,
                            v_phi)
        phi1 = ddcosmo.make_phi(pcm, dm, r_vdw, ui, ylm_1sph)
        self.assertTrue(abs(phi - phi1).max() < 1e-12)
Exemplo n.º 30
0
    def test_make_ylm(self):
        numpy.random.seed(1)
        lmax = 6
        r = numpy.random.random((100,3)) - numpy.ones(3)*.5
        r = r / lib.norm(r,axis=1).reshape(-1,1)

        ngrid = r.shape[0]
        cosphi = r[:,2]
        sinphi = (1-cosphi**2)**.5
        costheta = numpy.ones(ngrid)
        sintheta = numpy.zeros(ngrid)
        costheta[sinphi!=0] = r[sinphi!=0,0] / sinphi[sinphi!=0]
        sintheta[sinphi!=0] = r[sinphi!=0,1] / sinphi[sinphi!=0]
        costheta[costheta> 1] = 1
        costheta[costheta<-1] =-1
        sintheta[sintheta> 1] = 1
        sintheta[sintheta<-1] =-1
        varphi = numpy.arccos(cosphi)
        theta = numpy.arccos(costheta)
        theta[sintheta<0] = 2*numpy.pi - theta[sintheta<0]
        ylmref = []
        for l in range(lmax+1):
            ylm = numpy.empty((l*2+1,ngrid))
            ylm[l] = scipy.special.sph_harm(0, l, theta, varphi).real
            for m in range(1, l+1):
                f1 = scipy.special.sph_harm(-m, l, theta, varphi)
                f2 = scipy.special.sph_harm( m, l, theta, varphi)
                # complex to real spherical functions
                if m % 2 == 1:
                    ylm[l-m] = (-f1.imag - f2.imag) / numpy.sqrt(2)
                    ylm[l+m] = ( f1.real - f2.real) / numpy.sqrt(2)
                else:
                    ylm[l-m] = (-f1.imag + f2.imag) / numpy.sqrt(2)
                    ylm[l+m] = ( f1.real + f2.real) / numpy.sqrt(2)
            if l == 1:
                ylm = ylm[[2,0,1]]
            ylmref.append(ylm)
        ylmref = numpy.vstack(ylmref)
        ylm = numpy.vstack(sph.real_sph_vec(r, lmax, True))
        self.assertTrue(abs(ylmref - ylm).max() < 1e-14)
Exemplo n.º 31
0
    def test_make_ylm(self):
        numpy.random.seed(1)
        lmax = 6
        r = numpy.random.random((100, 3)) - numpy.ones(3) * .5
        r = r / lib.norm(r, axis=1).reshape(-1, 1)

        ngrid = r.shape[0]
        cosphi = r[:, 2]
        sinphi = (1 - cosphi**2)**.5
        costheta = numpy.ones(ngrid)
        sintheta = numpy.zeros(ngrid)
        costheta[sinphi != 0] = r[sinphi != 0, 0] / sinphi[sinphi != 0]
        sintheta[sinphi != 0] = r[sinphi != 0, 1] / sinphi[sinphi != 0]
        costheta[costheta > 1] = 1
        costheta[costheta < -1] = -1
        sintheta[sintheta > 1] = 1
        sintheta[sintheta < -1] = -1
        varphi = numpy.arccos(cosphi)
        theta = numpy.arccos(costheta)
        theta[sintheta < 0] = 2 * numpy.pi - theta[sintheta < 0]
        ylmref = []
        for l in range(lmax + 1):
            ylm = numpy.empty((l * 2 + 1, ngrid))
            ylm[l] = scipy.special.sph_harm(0, l, theta, varphi).real
            for m in range(1, l + 1):
                f1 = scipy.special.sph_harm(-m, l, theta, varphi)
                f2 = scipy.special.sph_harm(m, l, theta, varphi)
                # complex to real spherical functions
                if m % 2 == 1:
                    ylm[l - m] = (-f1.imag - f2.imag) / numpy.sqrt(2)
                    ylm[l + m] = (f1.real - f2.real) / numpy.sqrt(2)
                else:
                    ylm[l - m] = (-f1.imag + f2.imag) / numpy.sqrt(2)
                    ylm[l + m] = (f1.real + f2.real) / numpy.sqrt(2)
            if l == 1:
                ylm = ylm[[2, 0, 1]]
            ylmref.append(ylm)
        ylmref = numpy.vstack(ylmref)
        ylm = numpy.vstack(sph.real_sph_vec(r, lmax, True))
        self.assertTrue(abs(ylmref - ylm).max() < 1e-14)
Exemplo n.º 32
0
 def test_real_sph_vec(self):
     r = numpy.random.random((5,3))
     ref = real_sph_ref(r, 5)
     ylm = sph.real_sph_vec(r, 5)
     self.assertAlmostEqual(abs(ref - numpy.vstack(ylm).T).max(), 0, 14)
Exemplo n.º 33
0
    def test_B1(self):
        def getB(mol):
            pcm = ddcosmo.DDCOSMO(mol)
            pcm.lmax = 2
            pcm.eps = 0
            natm = mol.natm
            nao = mol.nao
            nlm = (pcm.lmax + 1)**2
            r_vdw = ddcosmo.get_atomic_radii(pcm)
            fi = ddcosmo.make_fi(pcm, r_vdw)
            ui = 1 - fi
            ui[ui < 0] = 0
            pcm.grids = grids = dft.gen_grid.Grids(mol).run(level=0)
            coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
                pcm.lebedev_order)
            ylm_1sph = numpy.vstack(
                sph.real_sph_vec(coords_1sph, pcm.lmax, True))
            cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
            L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
            return make_B(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)

        pcm = ddcosmo.DDCOSMO(mol0)
        pcm.lmax = 2
        pcm.eps = 0
        natm = mol0.natm
        nao = mol0.nao
        nlm = (pcm.lmax + 1)**2
        r_vdw = ddcosmo.get_atomic_radii(pcm)
        fi = ddcosmo.make_fi(pcm, r_vdw)
        ui = 1 - fi
        ui[ui < 0] = 0
        pcm.grids = grids = dft.gen_grid.Grids(mol0).run(level=0)
        coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
            pcm.lebedev_order)
        ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcm.lmax, True))
        cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw, pcm.lmax)
        L = ddcosmo.make_L(pcm, r_vdw, ylm_1sph, fi)
        dB = make_B1(pcm, r_vdw, ui, ylm_1sph, cached_pol, L)

        B1 = getB(mol1)
        B2 = getB(mol2)
        self.assertAlmostEqual(abs((B2 - B1) / dx - dB[0, 2]).max(), 0, 8)

        nao = mol0.nao
        numpy.random.seed(1)
        dm1 = numpy.random.random((2, nao, nao))
        dm2 = numpy.random.random((2, nao, nao))
        dm = dm1[0]
        ref = numpy.einsum('azpqrs,npq->nazrs', dB, dm1)
        v = B1_dot_x(pcm, dm, r_vdw, ui, ylm_1sph, cached_pol, L)
        self.assertAlmostEqual(abs(v - ref[0]).max(), 0, 12)

        de = _ddcosmo_tdscf_grad._grad_ee(pcm, dm1, dm2, r_vdw, ui, ylm_1sph,
                                          cached_pol, L)
        ref = numpy.einsum('nazij,nij->naz', ref, dm2)
        self.assertAlmostEqual(abs(de - ref).max(), 0, 12)

        numpy.random.seed(1)
        dm = numpy.random.random((nao, nao))
        dm = dm + dm.T
        ref = ddcosmo_grad.kernel(pcm, dm)
        dielectric = pcm.eps
        if dielectric > 0:
            f_epsilon = (dielectric - 1.) / dielectric
        else:
            f_epsilon = 1
        de = _ddcosmo_tdscf_grad._grad_nn(pcm, r_vdw, ui, ylm_1sph, cached_pol,
                                          L)
        de += _ddcosmo_tdscf_grad._grad_ne(pcm, dm, r_vdw, ui, ylm_1sph,
                                           cached_pol, L)
        de += .5 * _ddcosmo_tdscf_grad._grad_ee(pcm, dm, dm, r_vdw, ui,
                                                ylm_1sph, cached_pol, L)
        de *= .5 * f_epsilon
        self.assertAlmostEqual(abs(de - ref).max(), 0, 12)
Exemplo n.º 34
0
def make_phi1(pcmobj, dm, r_vdw, ui):
    mol = pcmobj.mol
    natm = mol.natm
    nlm = (pcmobj.lmax+1)**2

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        dm = dm[0] + dm[1]
    tril_dm = lib.pack_tril(dm+dm.T)
    nao = dm.shape[0]
    diagidx = numpy.arange(nao)
    diagidx = diagidx*(diagidx+1)//2 + diagidx
    tril_dm[diagidx] *= .5

    atom_coords = mol.atom_coords()
    atom_charges = mol.atom_charges()

    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    extern_point_idx = ui > 0

    fi1 = make_fi1(pcmobj, pcmobj.get_atomic_radii())
    fi1[:,:,ui==0] = 0
    ui1 = -fi1

    ngrid_1sph = weights_1sph.size
    v_phi0 = numpy.empty((natm,ngrid_1sph))
    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        d_rs = atom_coords.reshape(-1,1,3) - cav_coords
        v_phi0[ia] = numpy.einsum('z,zp->p', atom_charges, 1./lib.norm(d_rs,axis=2))
    phi1 = -numpy.einsum('n,ln,azjn,jn->azjl', weights_1sph, ylm_1sph, ui1, v_phi0)

    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        for ja in range(natm):
            rs = atom_coords[ja] - cav_coords
            d_rs = lib.norm(rs, axis=1)
            v_phi = atom_charges[ja] * numpy.einsum('px,p->px', rs, 1./d_rs**3)
            tmp = numpy.einsum('n,ln,n,nx->xl', weights_1sph, ylm_1sph, ui[ia], v_phi)
            phi1[ja,:,ia] += tmp  # response of the other atoms
            phi1[ia,:,ia] -= tmp  # response of cavity grids

    int3c2e = mol._add_suffix('int3c2e')
    int3c2e_ip1 = mol._add_suffix('int3c2e_ip1')
    aoslices = mol.aoslice_by_atom()
    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        #fakemol = gto.fakemol_for_charges(cav_coords[ui[ia]>0])
        fakemol = gto.fakemol_for_charges(cav_coords)
        v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e, aosym='s1')
        v_phi = numpy.einsum('ij,ijk->k', dm, v_nj)
        phi1[:,:,ia] += numpy.einsum('n,ln,azn,n->azl', weights_1sph, ylm_1sph, ui1[:,:,ia], v_phi)

        v_e1_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip1, comp=3, aosym='s1')
        v_e2_nj = v_e1_nj + v_e1_nj.transpose(0,2,1,3)
        phi1_e2_nj = numpy.einsum('ji,xijr->xr', dm, v_e2_nj)
        phi1[ia,:,ia] += numpy.einsum('n,ln,n,xn->xl', weights_1sph, ylm_1sph, ui[ia], phi1_e2_nj)

        for ja in range(natm):
            shl0, shl1, p0, p1 = aoslices[ja]
            phi1_nj  = numpy.einsum('ij,xijr->xr', dm[p0:p1  ], v_e1_nj[:,p0:p1])
            phi1_nj += numpy.einsum('ji,xijr->xr', dm[:,p0:p1], v_e1_nj[:,p0:p1])
            phi1[ja,:,ia] -= numpy.einsum('n,ln,n,xn->xl', weights_1sph, ylm_1sph, ui[ia], phi1_nj)
    return phi1
Exemplo n.º 35
0
def make_phi(pcmobj, dm, r_vdw, ui):
    '''
    Eq. (13) g_j
    '''
    mol = pcmobj.mol
    natm = mol.natm
    natm_tot = natm
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    ngrid_1sph = coords_1sph.shape[0]

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        dm = dm[0] + dm[1]
    tril_dm = lib.pack_tril(dm + dm.T)
    nao = dm.shape[0]
    diagidx = numpy.arange(nao)
    diagidx = diagidx * (diagidx + 1) // 2 + diagidx
    tril_dm[diagidx] *= .5

    atom_coords = mol.atom_coords()
    atom_charges = list(mol.atom_charges())  # list

    # An apparent surface charge (ASC) on Gamma: the surface area of the whole system (QM + MM)
    # \sigma_j (s) = \sum_lm X_j^{lm} Y_lm (s)
    #
    if pcmobj.mm_mol is not None:
        atom_coords = numpy.vstack((atom_coords, pcmobj.mm_mol.atom_coords()))
        atom_charges += list(pcmobj.mm_mol.atom_charges())  # list
        natm_tot += pcmobj.mm_mol.natm

    cav_coords = (atom_coords.reshape(natm_tot, 1, 3) +
                  numpy.einsum('r,gx->rgx', r_vdw, coords_1sph))

    v_phi = numpy.empty((natm_tot, ngrid_1sph))

    for ia in range(natm_tot):
        # Note (-) sign is not applied to atom_charges, because (-) is explicitly
        # included in rhs and L matrix
        d_rs = atom_coords.reshape(-1, 1, 3) - cav_coords[ia]
        v_phi[ia] = numpy.einsum('z,zp->p', atom_charges,
                                 1. / lib.norm(d_rs, axis=2))

    max_memory = pcmobj.max_memory - lib.current_memory()[0]
    blksize = int(max(max_memory * 1e6 / 8 / nao**2, 400))

    #   from the electronic density of QM
    extern_point_idx = ui > 0
    cav_coords = cav_coords[extern_point_idx]
    v_phi_e = numpy.empty(cav_coords.shape[0])
    int3c2e = mol._add_suffix('int3c2e')
    cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, int3c2e)

    for i0, i1 in lib.prange(0, cav_coords.shape[0], blksize):
        fakemol = gto.fakemol_for_charges(cav_coords[i0:i1])
        v_nj = df.incore.aux_e2(mol,
                                fakemol,
                                intor=int3c2e,
                                aosym='s2ij',
                                cintopt=cintopt)
        v_phi_e[i0:i1] = numpy.einsum('x,xk->k', tril_dm, v_nj)
    v_phi[extern_point_idx] -= v_phi_e

    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    # Eq(13)
    phi = -numpy.einsum('n,xn,jn,jn->jx', weights_1sph, ylm_1sph, ui, v_phi)
    return phi
Exemplo n.º 36
0
    from pyscf import mcscf
    from pyscf import cc
    mol = gto.M(atom='H 0 0 0; H 0 1 1.2; H 1. .1 0; H .5 .5 1')
    natm = mol.natm
    r_vdw = [radii.VDW[gto.charge(mol.atom_symbol(i))]
             for i in range(natm)]
    r_vdw = numpy.asarray(r_vdw)
    pcmobj = DDCOSMO(mol)
    pcmobj.regularize_xt = lambda t, eta, scale: regularize_xt(t, eta)
    pcmobj.lebedev_order = 7
    pcmobj.lmax = 6
    pcmobj.eta = 0.1
    nlm = (pcmobj.lmax+1)**2
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    fi = make_fi(pcmobj, r_vdw)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    L = make_L(pcmobj, r_vdw, ylm_1sph, fi)
    print(lib.finger(L) - 6.2823493771037473)

    mol = gto.Mole()
    mol.atom = ''' O                  0.00000000    0.00000000   -0.11081188
                   H                 -0.00000000   -0.84695236    0.59109389
                   H                 -0.00000000    0.89830571    0.52404783 '''
    mol.basis = '3-21g' #cc-pvdz'
    mol.build()
    cm = DDCOSMO(mol)
    cm.verbose = 4
    mf = ddcosmo_for_scf(scf.RHF(mol), cm)#.newton()
    mf.verbose = 4
    print(mf.kernel() - -75.570364368059)
    cm.verbose = 3
Exemplo n.º 37
0
def make_phi1(pcmobj, dm, r_vdw, ui):
    mol = pcmobj.mol
    natm = mol.natm
    nlm = (pcmobj.lmax+1)**2

    if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2):
        dm = dm[0] + dm[1]
    tril_dm = lib.pack_tril(dm+dm.T)
    nao = dm.shape[0]
    diagidx = numpy.arange(nao)
    diagidx = diagidx*(diagidx+1)//2 + diagidx
    tril_dm[diagidx] *= .5

    atom_coords = mol.atom_coords()
    atom_charges = mol.atom_charges()

    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(pcmobj.lebedev_order)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    extern_point_idx = ui > 0

    fi1 = make_fi1(pcmobj, pcmobj.get_atomic_radii())
    fi1[:,:,ui==0] = 0
    ui1 = -fi1

    ngrid_1sph = weights_1sph.size
    v_phi0 = numpy.empty((natm,ngrid_1sph))
    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        d_rs = atom_coords.reshape(-1,1,3) - cav_coords
        v_phi0[ia] = numpy.einsum('z,zp->p', atom_charges, 1./lib.norm(d_rs,axis=2))
    phi1 = -numpy.einsum('n,ln,azjn,jn->azjl', weights_1sph, ylm_1sph, ui1, v_phi0)

    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        for ja in range(natm):
            rs = atom_coords[ja] - cav_coords
            d_rs = lib.norm(rs, axis=1)
            v_phi = atom_charges[ja] * numpy.einsum('px,p->px', rs, 1./d_rs**3)
            tmp = numpy.einsum('n,ln,n,nx->xl', weights_1sph, ylm_1sph, ui[ia], v_phi)
            phi1[ja,:,ia] += tmp  # response of the other atoms
            phi1[ia,:,ia] -= tmp  # response of cavity grids

    int3c2e = mol._add_suffix('int3c2e')
    int3c2e_ip1 = mol._add_suffix('int3c2e_ip1')
    aoslices = mol.aoslice_by_atom()
    for ia in range(natm):
        cav_coords = atom_coords[ia] + r_vdw[ia] * coords_1sph
        #fakemol = gto.fakemol_for_charges(cav_coords[ui[ia]>0])
        fakemol = gto.fakemol_for_charges(cav_coords)
        v_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e, aosym='s1')
        v_phi = numpy.einsum('ij,ijk->k', dm, v_nj)
        phi1[:,:,ia] += numpy.einsum('n,ln,azn,n->azl', weights_1sph, ylm_1sph, ui1[:,:,ia], v_phi)

        v_e1_nj = df.incore.aux_e2(mol, fakemol, intor=int3c2e_ip1, comp=3, aosym='s1')
        v_e2_nj = v_e1_nj + v_e1_nj.transpose(0,2,1,3)
        phi1_e2_nj = numpy.einsum('ji,xijr->xr', dm, v_e2_nj)
        phi1[ia,:,ia] += numpy.einsum('n,ln,n,xn->xl', weights_1sph, ylm_1sph, ui[ia], phi1_e2_nj)

        for ja in range(natm):
            shl0, shl1, p0, p1 = aoslices[ja]
            phi1_nj  = numpy.einsum('ij,xijr->xr', dm[p0:p1  ], v_e1_nj[:,p0:p1])
            phi1_nj += numpy.einsum('ji,xijr->xr', dm[:,p0:p1], v_e1_nj[:,p0:p1])
            phi1[ja,:,ia] -= numpy.einsum('n,ln,n,xn->xl', weights_1sph, ylm_1sph, ui[ia], phi1_nj)
    return phi1
Exemplo n.º 38
0
    from pyscf import mcscf
    from pyscf import cc
    mol = gto.M(atom='H 0 0 0; H 0 1 1.2; H 1. .1 0; H .5 .5 1')
    natm = mol.natm
    r_vdw = [radii.VDW[gto.charge(mol.atom_symbol(i))]
             for i in range(natm)]
    r_vdw = numpy.asarray(r_vdw)
    pcmobj = DDCOSMO(mol)
    pcmobj.regularize_xt = lambda t, eta, scale: regularize_xt(t, eta)
    pcmobj.lebedev_order = 7
    pcmobj.lmax = 6
    pcmobj.eta = 0.1
    nlm = (pcmobj.lmax+1)**2
    coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order)
    fi = make_fi(pcmobj, r_vdw)
    ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, pcmobj.lmax, True))
    L = make_L(pcmobj, r_vdw, ylm_1sph, fi)
    print(lib.finger(L) - 6.2823493771037473)

    mol = gto.Mole()
    mol.atom = ''' O                  0.00000000    0.00000000   -0.11081188
                   H                 -0.00000000   -0.84695236    0.59109389
                   H                 -0.00000000    0.89830571    0.52404783 '''
    mol.basis = '3-21g' #cc-pvdz'
    mol.build()
    cm = DDCOSMO(mol)
    cm.verbose = 4
    mf = ddcosmo_for_scf(scf.RHF(mol), cm)#.newton()
    mf.verbose = 4
    print(mf.kernel() - -75.570364368059)
    cm.verbose = 3
Exemplo n.º 39
0
def tda_grad(td, z):
    '''ddcosmo TDA gradients'''
    mol = td.mol
    mf = td._scf
    mo_coeff = mf.mo_coeff
    mo_energy = mf.mo_energy
    mo_occ = mf.mo_occ
    nao, nmo = mo_coeff.shape
    nocc = (mo_occ > 0).sum()
    nvir = nmo - nocc
    z = z[0].reshape(nocc, nvir).T * numpy.sqrt(2)
    orbv = mo_coeff[:, nocc:]
    orbo = mo_coeff[:, :nocc]

    r_vdw = ddcosmo.get_atomic_radii(td.with_solvent)
    fi = ddcosmo.make_fi(td.with_solvent, r_vdw)
    ui = 1 - fi
    coords_1sph, weights_1sph = ddcosmo.make_grids_one_sphere(
        td.with_solvent.lebedev_order)
    ylm_1sph = numpy.vstack(
        sph.real_sph_vec(coords_1sph, td.with_solvent.lmax, True))
    grids = td.with_solvent.grids
    cached_pol = ddcosmo.cache_fake_multipoles(grids, r_vdw,
                                               td.with_solvent.lmax)
    L = ddcosmo.make_L(td.with_solvent, r_vdw, ylm_1sph, fi)

    def fvind(x):
        v_mo = numpy.einsum('iabj,xai->xbj', g[:nocc, nocc:, nocc:, :nocc], x)
        v_mo += numpy.einsum('aibj,xai->xbj', g[nocc:, :nocc, nocc:, :nocc], x)
        return v_mo

    h1 = rhf_grad.get_hcore(mol)
    s1 = rhf_grad.get_ovlp(mol)

    eri1 = -mol.intor('int2e_ip1', aosym='s1', comp=3)
    eri1 = eri1.reshape(3, nao, nao, nao, nao)
    eri0 = ao2mo.kernel(mol, mo_coeff)
    eri0 = ao2mo.restore(1, eri0, nmo).reshape(nmo, nmo, nmo, nmo)
    g = eri0 * 2 - eri0.transpose(0, 3, 2, 1)
    zeta = lib.direct_sum('i+j->ij', mo_energy, mo_energy) * .5
    zeta[nocc:, :nocc] = mo_energy[:nocc]
    zeta[:nocc, nocc:] = mo_energy[nocc:]

    dielectric = td.with_solvent.eps
    if dielectric > 0:
        f_epsilon = (dielectric - 1.) / dielectric
    else:
        f_epsilon = 1
    pcm_nuc = .5 * f_epsilon * nuc_part1(td.with_solvent, r_vdw, ui, ylm_1sph,
                                         cached_pol, L)
    B0 = .5 * f_epsilon * make_B(td.with_solvent, r_vdw, ui, ylm_1sph,
                                 cached_pol, L)
    B0 = lib.einsum('pqrs,pi,qj,rk,sl->ijkl', B0, mo_coeff, mo_coeff, mo_coeff,
                    mo_coeff)
    g += B0 * 2
    B1 = .5 * f_epsilon * make_B1(td.with_solvent, r_vdw, ui, ylm_1sph,
                                  cached_pol, L)

    offsetdic = mol.offset_nr_by_atom()
    de = numpy.zeros((mol.natm, 3))
    for ia in range(mol.natm):
        shl0, shl1, p0, p1 = offsetdic[ia]

        mol.set_rinv_origin(mol.atom_coord(ia))
        h1ao = -mol.atom_charge(ia) * mol.intor('int1e_iprinv', comp=3)
        h1ao[:, p0:p1] += h1[:, p0:p1]
        h1ao = h1ao + h1ao.transpose(0, 2, 1)
        h1ao += pcm_nuc[ia]
        h1mo = numpy.einsum('pi,xpq,qj->xij', mo_coeff, h1ao, mo_coeff)
        s1mo = numpy.einsum('pi,xpq,qj->xij', mo_coeff[p0:p1], s1[:, p0:p1],
                            mo_coeff)
        s1mo = s1mo + s1mo.transpose(0, 2, 1)

        f1 = h1mo - numpy.einsum('xpq,pq->xpq', s1mo, zeta)
        f1 -= numpy.einsum('klpq,xlk->xpq', g[:nocc, :nocc],
                           s1mo[:, :nocc, :nocc])

        eri1a = eri1.copy()
        eri1a[:, :p0] = 0
        eri1a[:, p1:] = 0
        eri1a = eri1a + eri1a.transpose(0, 2, 1, 3, 4)
        eri1a = eri1a + eri1a.transpose(0, 3, 4, 1, 2)
        g1 = lib.einsum('xpqrs,pi,qj,rk,sl->xijkl', eri1a, mo_coeff, mo_coeff,
                        mo_coeff, mo_coeff)
        tmp1 = lib.einsum('xpqrs,pi,qj,rk,sl->xijkl', B1[ia], mo_coeff,
                          mo_coeff, mo_coeff, mo_coeff)
        g1 = g1 * 2 - g1.transpose(0, 1, 4, 3, 2)
        g1 += tmp1 * 2
        f1 += numpy.einsum('xkkpq->xpq', g1[:, :nocc, :nocc])
        f1ai = f1[:, nocc:, :nocc].copy()

        c1 = s1mo * -.5
        c1vo = cphf.solve(fvind, mo_energy, mo_occ, f1ai, max_cycle=50)[0]
        c1[:, nocc:, :nocc] = c1vo
        c1[:, :nocc,
           nocc:] = -(s1mo[:, nocc:, :nocc] + c1vo).transpose(0, 2, 1)
        f1 += numpy.einsum('kapq,xak->xpq', g[:nocc, nocc:], c1vo)
        f1 += numpy.einsum('akpq,xak->xpq', g[nocc:, :nocc], c1vo)

        e1 = numpy.einsum('xaijb,ai,bj->x', g1[:, nocc:, :nocc, :nocc, nocc:],
                          z, z)
        e1 += numpy.einsum('xab,ai,bi->x', f1[:, nocc:, nocc:], z, z)
        e1 -= numpy.einsum('xij,ai,aj->x', f1[:, :nocc, :nocc], z, z)

        g1 = numpy.einsum('pjkl,xpi->xijkl', g, c1)
        g1 += numpy.einsum('ipkl,xpj->xijkl', g, c1)
        g1 += numpy.einsum('ijpl,xpk->xijkl', g, c1)
        g1 += numpy.einsum('ijkp,xpl->xijkl', g, c1)
        e1 += numpy.einsum('xaijb,ai,bj->x', g1[:, nocc:, :nocc, :nocc, nocc:],
                           z, z)

        de[ia] = e1

    return de