Exemplo n.º 1
0
def makeSchedule(content):
    horizon = content["horizon"]
    print(horizon)
    # Define all the players
    MyScenario = Scenario('manufacturing_schedule', horizon=horizon)
    MyResources = {}
    MyTasks = {}

    # Define the resources (manufacturing lines)
    manufacturing_lines = content["manufacturing_lines"]
    print(manufacturing_lines)
    for manufacturing_line in manufacturing_lines:
        MyResources[manufacturing_line] = MyScenario.Resource(
            str(manufacturing_line))

    # Define tasks which are already present which must remain in the same location
    # Known as blocking tasks
    blocks = content["blocks"]
    print(blocks)
    for block in blocks:
        blockid = str(block["goal_name"] + "_" + str(block["sku_number"]))
        manufacturing_line_name = block["manufacturing_line_name"]
        start = block["start"]
        end = block["end"]

        # Create task and add the resource that will execute it
        task = MyScenario.Task(blockid, length=end - start)
        task += MyResources[manufacturing_line_name]

        # Define the bounds
        MyScenario += task > start, task < end

    # New tasks which must be scheduled
    tasks = content["tasks"]
    print(tasks)
    for task in tasks:
        taskid = str(task["goal_name"] + "_" + str(task["sku_number"]))
        duration = task["duration"]
        manufacturing_line_names = task["manufacturing_line_names"]
        deadline = task["deadline"]

        t = MyScenario.Task(taskid, length=duration, delay_cost=1)

        resources = MyResources[manufacturing_line_names[0]]
        for i in range(1, len(manufacturing_line_names)):
            resources = resources | MyResources[manufacturing_line_names[i]]
        t += resources

        MyScenario += t > 0, t < deadline

    solvers.mip.solve(MyScenario, msg=1)
    plotters.matplotlib.plot(MyScenario, img_filename='household.png')
    return MyScenario.solution()
Exemplo n.º 2
0
def two_task_scenario():
    S = Scenario('Scenario_1', horizon=horizon)
    T1 = S.Task('T1')
    T2 = S.Task('T2')
    R1 = S.Resource('R1')
    R2 = S.Resource('R2')
    S += T1 * 2 + T2  #T1 has priority to break ties
    return S
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

n_night_shifts = 5
n_day_shifts = 5
n_tasks = n_night_shifts + n_day_shifts
horizon = n_tasks

from pyschedule import Scenario, solvers, plotters
S = Scenario('shift_bounds', horizon=horizon)

R = S.Resource('P')
for i in range(n_night_shifts):
    # added some delay cost, so without any
    # constraint, there would be first 5 night shifts
    # and then 5 day shifts
    T = S.Task('N%i' % i, delay_cost=2)
    # the shift type of night shifts is -1
    T.shift_type = -1
    T += R
for i in range(n_day_shifts):
    T = S.Task('D%i' % i, delay_cost=1)
    # the shift type of day shifts is -1
    T.shift_type = 1
    T += R

for i in range(horizon):
    # for every set of periods 1..i, make sure that
    # there is always at most one more night shift than
    # day shifts and vice versa. Each capacity constraint
    # limits the sum of 'shift_types' in the range
    S += R[:i]['shift_type'] <= 1
Exemplo n.º 4
0
# read from folder
import sys
sys.path += ['../src','src']
import getopt
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

from pyschedule import Scenario, solvers, plotters, Task
S = Scenario('shift_bounds',horizon=8)

# define two employees
empl0 = S.Resource('empl0')
empl1 = S.Resource('empl1')

# employee 0 starts at two and ends
# at most four hours later
empl0_beg = S.Task('empl0_beg',completion_time_cost=2)
empl0_beg += empl0
empl0_fin = S.Task('empl0_fin',completion_time_cost=2)
empl0_fin += empl0
#S += 2 <= empl0_beg, empl0_fin < empl0_beg + 6

# employee 1 begins at any time and finishes
# at most four hours later
empl1_beg = S.Task('empl1_beg',completion_time_cost=2)
empl1_beg += empl1
empl1_fin = S.Task('empl1_fin',completion_time_cost=2)
empl1_fin += empl1
#S += empl1_fin < empl1_beg + 6

# interchangeable tasks that need to be finished as
# by the two employees as early as possible
Exemplo n.º 5
0
pierre = S.Resource('staff.pierre')
val = S.Resource('staff.valentin')
all_staff = (gui, pierre, val)

# Weekends
from dateutil.rrule import DAILY, rrule, SA


def find_saturdays(start_date, end_date):
    return rrule(DAILY, dtstart=start_date, until=end_date, byweekday=(SA))


all_saturdays = find_saturdays(begin, until)

for we_no, saturday in enumerate(all_saturdays):
    We = S.Task(name="We{0}".format(we_no), length=2)
    We += all_staff

    in_days = (saturday.date() - begin).days
    S += We <= in_days + 2, We >= in_days

    hide_list.append(We)

# Collect unworkable days from Calendar
# FIXME: Gérer les éléments de plusieurs journées
# FIXME: Gérer les micro événements
print("\t*Collecting calendar days...")
from icalevents.icalevents import events
es = events("https://calendar.google.com/", start=begin, end=until)
for idx, ev in enumerate(es):
    if "Brassage" not in ev.summary or (ev.start.date() < today):
Exemplo n.º 6
0
# test artefact for the case that pyschedule is
# read from folder
import sys
sys.path.append('../src')
import getopt
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

horizon=10

from pyschedule import Scenario, solvers, plotters, alt
S = Scenario('shift_bounds',horizon=horizon)

# define two employees
R = S.Resources('R',num=2)

T0 = S.Task('T0',completion_time_cost=3)
T0 += alt(R)

T1 = S.Task('T1',completion_time_cost=1)
T1 += alt(R)

T1 += T0*R[0]
T0 += T1*R[0]

if solvers.mip.solve(S, msg=0):
	if ('--test','') in opts:
		assert(T0.start_value == 0)
		assert(T1.start_value == 1)
		print('test passed')
	else:
		plotters.matplotlib.plot(S, fig_size=(10, 5), vertical_text=True)
sys.path.append('../src')
import getopt

opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

horizon = 10

from pyschedule import Scenario, solvers, plotters, alt

S = Scenario('shift_bounds', horizon=horizon)

# define two employees
R = S.Resources('R', num=2)

T0 = S.Task('T0', delay_cost=3)
T0 += alt(R)

T1 = S.Task('T1', delay_cost=1)
T1 += alt(R)

T1 += T0 * R[0]
T0 += T1 * R[0]

if solvers.mip.solve(S, msg=0):
    if ('--test', '') in opts:
        assert (T0.start_value == 0)
        assert (T1.start_value == 1)
        print('test passed')
    else:
        plotters.matplotlib.plot(S, fig_size=(10, 5), vertical_text=True)
Exemplo n.º 8
0
from pyschedule import Scenario, solvers, plotters, alt

# the planning horizon has 10 periods
S = Scenario('household',horizon=10)

# two resources: Alice and Bob
Alice, Bob = S.Resource('Alice'), S.Resource('Bob')

# three tasks: cook, wash, and clean
cook = S.Task('cook',length=1,delay_cost=1)
wash = S.Task('wash',length=2,delay_cost=1)
clean = S.Task('clean',length=3,delay_cost=2)

# every task can be done either by Alice or Bob
cook += Alice | Bob
wash += Alice | Bob
clean += Alice | Bob

# compute and print a schedule
solvers.mip.solve(S,msg=1)
print(S.solution())

plotters.matplotlib.plot(S,img_filename='household.png')
Exemplo n.º 9
0
# Also see: https://developers.google.com/optimization/mip/integer_opt
# https://towardsdatascience.com/modeling-and-optimization-of-a-weekly-workforce-with-python-and-pyomo-29484ba065bb
from pyschedule import Scenario, solvers, plotters, alt, plotters
from raw_data import tasks_data, workers_tasks_eligibility, workers_skills

# the planning horizon has 10 periods
S = Scenario("construction", horizon=10)

# resources
resources = {worker_id: S.Resource(worker_id, size=1) for worker_id in workers_skills}

# tasks
tasks = {
    task_id: S.Task(task_id, length=task_data["duration"], delay_cost=1)
    for task_id, task_data in tasks_data.items()
}
# for t in tasks.values():
#     print(t.length)

# Worker-Task eligibility.
for task_id in tasks:
    eligible_workers = []
    for worker_id, task_ids in workers_tasks_eligibility.items():
        if task_id in task_ids:
            eligible_workers.append(resources[worker_id])
    if len(eligible_workers) == 0:
        continue
    print(f"{task_id}: {eligible_workers}")
    for worker in eligible_workers:
        tasks[task_id] += alt(worker)
# Pour exécuter le fichier :

# py -3.6 lenomdufichier.py

from pyschedule import Scenario, solvers, plotters, alt

# On crée un scénario , la période est en heures dans ce cas
S = Scenario('emploiDeMaison', horizon=10)

# 2 ressources: Alice et Bob
Alice, Bob = S.Resource('Alice'), S.Resource('Bob')

# 3 tâches: cuisiner, nettoyer, and polir

cuisiner = S.Task('cuisiner', 1)
nettoyer = S.Task('nettoyer', 2)
polir = S.Task('polir', 3)

# chaque tache peut être réalisée par Alice ou Bob
cuisiner += Alice | Bob
nettoyer += Alice | Bob
polir += Alice | Bob

# Résoudre et imprimer l'ordonnac
S.use_makespan_objective()
solvers.mip.solve(S, msg=1)
print(S.solution())

# Dans cet exemple, nous utilisons un objectif makespan,
# ce qui signifie que nous voulons minimiser le temps
Exemplo n.º 11
0
# test artefact for the case that pyschedule is
# read from folder
import sys
sys.path.append('../src')
horizon = 4

import getopt
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])
from pyschedule import Scenario, solvers, plotters, alt
S = Scenario('test', horizon=horizon)

R = S.Resources('R', num=2)

T0 = S.Task('T0', delay_cost=1)
T0 += R[0]

T1 = S.Task('T1', length=2, delay_cost=4)
T1 += alt(R)

T2 = S.Task('T2', delay_cost=3)
T2 += alt(R)

S += T0 < T1 * R[0]
S += T0 < T2 * R[0]

#S += T1 < T0*R[0]
#S += T1 < T2*R[0]

if solvers.mip.solve(S, msg=0):
    opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])
    if ('--test', '') in opts:
Exemplo n.º 12
0
# read from folder
import sys
sys.path += ['../src', 'src']
import getopt
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

from pyschedule import Scenario, solvers, plotters, Task
S = Scenario('shift_bounds', horizon=8)

# define two employees
empl0 = S.Resource('empl0')
empl1 = S.Resource('empl1')

# employee 0 starts at two and ends
# at most four hours later
empl0_beg = S.Task('empl0_beg', delay_cost=2)
empl0_beg += empl0
empl0_fin = S.Task('empl0_fin', delay_cost=2)
empl0_fin += empl0
#S += 2 <= empl0_beg, empl0_fin < empl0_beg + 6

# employee 1 begins at any time and finishes
# at most four hours later
empl1_beg = S.Task('empl1_beg', delay_cost=2)
empl1_beg += empl1
empl1_fin = S.Task('empl1_fin', delay_cost=2)
empl1_fin += empl1
#S += empl1_fin < empl1_beg + 6

# interchangeable tasks that need to be finished as
# by the two employees as early as possible
# Pour exécuter le fichier :

# py -3.6 lenomdufichier.py

from pyschedule import Scenario, solvers, plotters, alt

# On crée un scénario , la période est en heures dans ce cas
S = Scenario('emploiDeMaison', horizon=10)

# 2 ressources: Alice et Bob
Alice, Bob = S.Resource('Alice'), S.Resource('Bob')

# 3 tâches: cuisiner, nettoyer, and polir
# length : durée en heure, delay_cost = cout
cuisiner = S.Task('cuisiner', length=1, delay_cost=1)
nettoyer = S.Task('nettoyer', length=2, delay_cost=1)
polir = S.Task('polir', length=3, delay_cost=2)

# chaque tache peut être réalisée par Alice ou Bob
cuisiner += Alice | Bob
nettoyer += Alice | Bob
polir += Alice | Bob

# Résoudre et imprimer l'ordonnacement des tâches
solvers.mip.solve(S, msg=1)
print(S.solution())

# Résultat
# INFO: execution time for solving mip (sec) = 0.04697251319885254
# INFO: objective = 1.0
Exemplo n.º 14
0
    transfer = S.Task('transfer.{0}'.format(name), length=60)
    transfer += bk

    return mash, [mash <= sparge1,
                  sparge1 <= sparge2,
                  sparge2 <= boil,
                  boil <= transfer]


mash1, brew1 = make_brew("A")
S += brew1

mash2, brew2 = make_brew("B")
S += brew2

remove_spent_grain = S.Task('remove_spent_grain', length=20)
remove_spent_grain += mt
remove_spent_grain.dirty = -1

clean_mt = S.Task('clean_mt', length=30)
clean_mt += mt

clean_bk = S.Task('clean_bk', length=40)
clean_bk += bk

S += [mash1 < mash2,
      mash1 < remove_spent_grain,
      mash2 < clean_mt,
      mash2 < clean_bk]

S += [remove_spent_grain < clean_mt,
from pyschedule import Scenario, solvers, plotters, alt
S = Scenario('schedule_cost', horizon=10)
R = S.Resource('R')

# not setting a schedule cost will set it to None
T0 = S.Task('T0', length=2, delay_cost=1)
# setting the schedule cost of T1 to -1
T1 = S.Task('T1', length=2, delay_cost=1, schedule_cost=-1)

T0 += R
T1 += R
solvers.mip.solve(S, msg=1)
print(S.solution())

plotters.matplotlib.plot(S, img_filename='pyschedule_2.png')
Exemplo n.º 16
0
from pyschedule import Scenario, solvers, plotters, alt
S = Scenario('resource_cost', horizon=10)

# assign a cost per period of 5
R = S.Resource('R', cost_per_period=5)

T = S.Task('T', length=2, delay_cost=1)
T += R
solvers.mip.solve(S, msg=1)
print(S.solution())

plotters.matplotlib.plot(S, img_filename='pyschedule_3.png')
Exemplo n.º 17
0
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])

n_night_shifts = 5
n_day_shifts = 5
n_tasks = n_night_shifts + n_day_shifts
horizon = n_tasks

from pyschedule import Scenario, solvers, plotters
S = Scenario('shift_bounds', horizon=horizon)

R = S.Resource('P')
for i in range(n_night_shifts):
    # added some completion time cost, so without any
    # constraint, there would be first 5 night shifts
    # and then 5 day shifts
    T = S.Task('N%i' % i, completion_time_cost=2)
    # the shift type of night shifts is -1
    T.shift_type = -1
    T += R
for i in range(n_day_shifts):
    T = S.Task('D%i' % i, completion_time_cost=1)
    # the shift type of day shifts is -1
    T.shift_type = 1
    T += R

for i in range(horizon):
    # for every set of periods 1..i, make sure that
    # there is always at most one more night shift than
    # day shifts and vice versa. Each capacity constraint
    # limits the sum of 'shift_types' in the range
    S += R[:i]['shift_type'] <= 1
Exemplo n.º 18
0
horizon = 20
S = Scenario('switch',horizon=horizon)
# Set some colors for the tasks
task_colors = dict()
task_group_colors = { 'A': 'green', 'B': 'red', 'C':'blue'}

R_machine = S.Resource('machine')
T = dict()

task_types = { 'A': 1, 'B': 2, 'C': 3}
task_lengths = { 'A': 2, 'B': 3, 'C':1 }

max_n_switches = 10
for i in range(max_n_switches):
	name = 'S_%i'%i
	T[name] = S.Task(name,group='switch')
	T[name] += R_machine
	T[name]['schedule_cost'] = 0.001
	for task_type in task_types:
		setup_param = '%s_state'%task_type
		T[name][setup_param] = 1

for task_type in task_types:
	for i in range(task_types[task_type]):
		name = '%s_%i'%(task_type,i)
		setup_param = '%s_state'%task_type
		T[name] = S.Task(name,group=task_type,length=task_lengths[task_type])
		T[name][setup_param] = 2
		#T[name]['reward'] = 1
		T[name] += R_machine
		task_colors[T[name]] = task_group_colors[task_type]
Exemplo n.º 19
0
from pyschedule import plotters, Scenario, solvers

S = Scenario('asdf', horizon=20)

r = S.Resource('r', periods=range(20))
t2 = S.Task('CE2', length=20)
t2 += r

res = solvers.mip.solve_tsp(S, msg=0)

print(S.solution())
print(S)
Exemplo n.º 20
0
n_plays_at_home = 4
max_n_not_at_home_periods = 3

S = Scenario('sports_scheduline',horizon=n_slots)
Stadiums = S.Resources('Stadium',num=n_stadiums)
Teams = S.Resources('T',num=n_teams)
Team2Stadium = dict(zip(Teams,Stadiums))

Games = list()
for Team0 in Teams:
	count = 1
	for Team1 in Teams:
		if Team0.name >= Team1.name:
			continue
		Game = S.Task('%s%s'%(Team0,Team1),completion_time_cost=2**count)
		Game[Team0.name] = 1
		Game[Team1.name] = 1
		Games.append(Game)
		Game += Team0, Team1
		Game += Team2Stadium[Team0] | Team2Stadium[Team1]
		count += 1

for Team in Team2Stadium:
	Stadium = Team2Stadium[Team]
	S += Stadium[Team.name] >= n_plays_at_home
	S += Stadium[Team.name][0:n_slots:max_n_not_at_home_periods] >= 1


if solvers.mip.solve(S,msg=0,kind='CBC'):
	import getopt
Exemplo n.º 21
0
# Will be created when needed
teachers = {}

classes = {}
for cls, _ in config['tclasses'].items():
    classes[cls] = scen.Resource(cls)

courses = {}
for course, info in config['courses'].items():
    if isinstance(info, list):
        info = {
            "profs": [info[0]],
            "length": info[1]
        }

    courses[course] = task = scen.Task(course, info["length"])

    if info["length"] == 4:
        task.periods = [x for x in range(0, DAYS * 5) if x % 5 == 0]
    elif info["length"] == 2:
        task.periods = [x for x in range(0, DAYS * 5) if x % 5 == 0]
        task.periods += [x + 2 for x in range(0, DAYS * 5) if x % 5 == 0]

    for teacher in info["profs"]:
        if (not teacher in teachers):
            teachers[teacher] = scen.Resource(teacher.replace(' ', '_'))
            # print("  - " + teacher)
        task += teachers[teacher]
    
    for cls, cls_courses in config['tclasses'].items():
        if course in cls_courses:
Exemplo n.º 22
0
# test artefact for the case that pyschedule is
# read from folder
import sys
sys.path.append('../src')
horizon = 5

import getopt
opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])
from pyschedule import Scenario, solvers, plotters, alt
S = Scenario('test', horizon=horizon)

# define two employees
R = S.Resources('R', num=2)

T0 = S.Task('T0', completion_time_cost=10)
T0 += alt(R)

T1 = S.Task('T1', length=2, completion_time_cost=2)
T1 += alt(R)

T2 = S.Task('T2', length=2, completion_time_cost=1)
T2 += alt(R)

S += T1 * R[0] <= T0
S += T2 * R[0] <= T0

if solvers.mip.solve(S, msg=0):
    if ('--test', '') in opts:
        assert (T0.start_value == 0)
        assert (T1.start_value == 0)
        assert (T2.start_value == 2)
Exemplo n.º 23
0
def solve(solver_data):
    # create scenario
    scenario = Scenario(name='scenario', horizon=int(solver_data['horizon']))

    # resources list
    resources = {}
    resources_map = {}
    resources_mapi = {}
    resources_ai = 0

    # tasks list
    tasks = {}
    tasks_map = {}
    tasks_mapi = {}
    tasks_ai = 0

    # blocks ai
    blocks_ai = 0

    #
    # enter resources

    print('[INFO] Importing resources...')
    for i, resource in enumerate(solver_data['resources']):
        print('[INFO] Importing resources... ({}/{})'.format(
            i + 1, len(solver_data['resources'])),
              end='\r')

        # convert to [name, size = 1]
        if not isinstance(resource, list):
            resource = [resource, 1]

        # label given to the solver backend
        rname = 'r' + str(resources_ai)

        has_parallel = False
        if resource[0].startswith('teacher_'):
            for task in solver_data['tasks']:
                if resource[0] in task['resources'] and task['tags'][
                        'block_value'] != task['length']:
                    has_parallel = True
                    print('Found parallel', resource, '                     ')
                    break

        size = 2 if has_parallel else 1

        resources[rname] = scenario.Resource(rname, size=size)
        resources_map[rname] = resource[0]
        resources_mapi[resource[0]] = rname
        resources_ai += 1

        if has_parallel:
            scenario += resources[rname]['block_value'][
                0:int(solver_data['horizon']):1] <= 1

    #
    # enter tasks

    print('[INFO] Importing tasks...')
    for task in solver_data['tasks']:
        tname = 't' + str(tasks_ai)

        tasks[tname] = scenario.Task(tname,
                                     length=task['length'],
                                     **task['tags'])
        tasks_map[tname] = task['label']
        tasks_mapi[task['label']] = tname
        tasks_ai += 1

        tasks[tname]['r_' + tname] = 1

        if 'period' in task and task['period'] != -1:
            tasks[tname].periods = [task['period']]
        else:
            if task['length'] == 4:
                tasks[tname].periods = [
                    i for i in range(0, solver_data['horizon']) if i % 4 == 0
                ]
            else:
                tasks[tname].periods = [
                    i for i in range(0, solver_data['horizon']) if i % 2 == 0
                ]

        # add resources to task
        for res_name in task['resources']:
            tasks[tname] += resources[resources_mapi[res_name]]

    #
    # enter blocks

    print('[INFO] Importing blocks...')
    for block in solver_data['blocks']:
        bname = 'b' + str(blocks_ai)

        task = scenario.Task(bname,
                             length=1,
                             periods=[block["start"]],
                             plot_color='#000000',
                             block_value=1)

        task += resources[resources_mapi[block["resource"]]]

        blocks_ai += 1

    print('[INFO] Importing sblocks...')
    for block in solver_data['sblocks']:
        bname = 'b' + str(blocks_ai)

        task = scenario.Task(bname,
                             length=1,
                             periods=[block["start"]],
                             plot_color='#000000',
                             schedule_cost=block["cost"],
                             block_value=1)

        task += resources[resources_mapi[block["resource"]]]

        blocks_ai += 1

    #
    # enter sync constraints

    print('[INFO] Importing sync constraints...')
    for constraint in solver_data['constraints']['sync']:
        scenario += tasks[tasks_mapi[constraint['tasks'][0]]] <= tasks[
            tasks_mapi[constraint['tasks'][1]]] + tasks[tasks_mapi[
                constraint['tasks'][0]]].length

    #
    # enter cap constraints

    print(solver_data['constraints']['cap'])
    # solver_data['constraints']['cap'] = [
    #     ['group_118', 'group_117'], ['group_118', 'group_116']]
    for i, constraint in enumerate(solver_data['constraints']['cap']):
        print('[INFO] Importing capacity constraints... ({}/{})'.format(
            i + 1, len(solver_data['constraints']['cap'])))

        for res in resources.values():
            if res.size == 1:
                continue

            cond = res[constraint[0]][0:int(solver_data['horizon']):1].max

            for t in constraint[1:]:
                cond = cond + res[t][0:int(solver_data['horizon']):1].max

            scenario += cond <= 1

    #
    # solve

    if solvers.mip.solve(scenario, msg=1):
        # plotters.matplotlib.plot(scenario, img_filename='out.png', fig_size=(
        #     resources_ai / 3, resources_ai / 2))

        solution = scenario.solution()
        real_solution = [[str(l[0]), str(l[1]), l[2], l[3]] for l in solution]

        for item in real_solution:
            if item[0][0] == 'b':
                continue
            item[0] = tasks_map[str(item[0])]
            item[1] = resources_map[str(item[1])]

        return {'solved': True, 'data': real_solution}
    else:
        return {'solved': False, 'error': 'Impossible'}
Exemplo n.º 24
0
n_plays_at_home = 4
max_n_not_at_home_periods = 3

S = Scenario('sports_scheduline', horizon=n_slots)
Stadiums = S.Resources('Stadium', num=n_stadiums)
Teams = S.Resources('T', num=n_teams)
Team2Stadium = dict(zip(Teams, Stadiums))

Games = list()
for Team0 in Teams:
    count = 1
    for Team1 in Teams:
        if Team0.name >= Team1.name:
            continue
        Game = S.Task('%s%s' % (Team0, Team1), delay_cost=2**count)
        Game[Team0.name] = 1
        Game[Team1.name] = 1
        Games.append(Game)
        Game += Team0, Team1
        Game += Team2Stadium[Team0] | Team2Stadium[Team1]
        count += 1

for Team in Team2Stadium:
    Stadium = Team2Stadium[Team]
    S += Stadium[Team.name] >= n_plays_at_home
    S += Stadium[Team.name][0:n_slots:max_n_not_at_home_periods] >= 1

if solvers.mip.solve(S, msg=0, kind='CBC'):
    import getopt
    opts, _ = getopt.getopt(sys.argv[1:], 't:', ['test'])
Exemplo n.º 25
0
resource_list = []
task_list = []
for i in range(len(name_list)):
    resource_list.append(
        S.Resource(name_list[i].replace(" ", ""),
                   length=1,
                   periods=[
                       getPeriodFromTime(t)
                       for t in data['times'][i]['availableTimes']
                   ]))

for i in range(len(name_list2)):
    task_list.append(
        S.Task(name_list2[i].replace(" ", ""),
               length=1,
               periods=[
                   getPeriodFromTime(t)
                   for t in data2['times'][i]['availableTimes']
               ]))

name_perms = list(combinations(range(len(name_list)), 2))
final = [[S.resources()[x[0]], S.resources()[x[1]]] for x in name_perms]

for t in task_list:
    random.shuffle(resource_list)
    t += alt(resource_list[:10]), alt(resource_list[10:])

# compute and print a schedule

solvers.mip.solve(S, random_seed=random.randint(1, 1000))
soln = S.solution()
interviewList = []