Exemplo n.º 1
0
def test_update_n_basis_modes_refit(basis, data_binary_classification):
    x, y, _ = data_binary_classification
    n_basis_modes = 5
    model = SSPOC(basis=basis(n_basis_modes=n_basis_modes))
    model.fit(x, y, quiet=True)
    assert model.basis_matrix_inverse_.shape[0] == n_basis_modes

    model.update_n_basis_modes(n_basis_modes + 1, (x, y), quiet=True)
    assert model.basis_matrix_inverse_.shape[0] == n_basis_modes + 1
Exemplo n.º 2
0
def test_prefit_basis(data_binary_classification):
    x, y, _ = data_binary_classification
    basis = Identity().fit(x)
    model_prefit = SSPOC(basis=basis)
    model_prefit.fit(x, y, prefit_basis=True, quiet=True)

    model_standard = SSPOC().fit(x, y, quiet=True)

    np.testing.assert_allclose(model_prefit.sensor_coef_,
                               model_standard.sensor_coef_)
Exemplo n.º 3
0
def test_update_n_basis_modes_shape(basis, data_binary_classification):
    x, y, _ = data_binary_classification
    n_basis_modes_init = 10
    model = SSPOC(basis=basis(n_basis_modes=n_basis_modes_init))
    model.fit(x, y, quiet=True)
    assert model.basis.n_basis_modes == n_basis_modes_init
    assert model.basis_matrix_inverse_.shape[0] == n_basis_modes_init

    n_basis_modes = 5
    model.update_n_basis_modes(n_basis_modes, xy=(x, y), quiet=True)
    assert model.basis.n_basis_modes == n_basis_modes_init
    assert model.basis_matrix_inverse_.shape[0] == n_basis_modes
Exemplo n.º 4
0
def test_update_n_basis_modes_errors(basis, data_binary_classification):
    x, y, _ = data_binary_classification
    n_basis_modes = 5
    model = SSPOC(basis=basis(n_basis_modes=n_basis_modes))

    model.fit(x, y, quiet=True)

    with pytest.raises(ValueError):
        model.update_n_basis_modes(0, xy=(x, y))
    with pytest.raises(ValueError):
        model.update_n_basis_modes("5", xy=(x, y))
    with pytest.raises(ValueError):
        model.update_n_basis_modes(x.shape[0] + 1, xy=(x, y))
Exemplo n.º 5
0
#f_gamma = np.array([-1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,3.0,0.0]).reshape(-1,1)
f_gamma = np.zeros(shape=(N, 1))
#f_gamma = np.random.normal(0,2,size=(N,1))
f_gamma[0:10] = np.random.normal(0, 5, size=(10, 1))
f_gamma[np.abs(f_gamma) < 2] = 0
Gamma = lambda x: np.dot(x, f_gamma)

beta = Gamma(X).squeeze()
dz = beta > 0
#y = H(x)

X_tr, X_te, dz_tr, dz_te = train_test_split(X, dz)

model = SSPOC()
model.fit(X_tr, dz_tr)

plt.figure()
plt.plot(np.sort(np.abs(model.sensor_coef_)), 'o')
plt.title('Coefficient magnitudes')

model.update_sensors(n_sensors=2, xy=(X_tr, dz_tr))
print('Portion of sensors used:', len(model.selected_sensors) / 10)
print('Selected sensors:', model.selected_sensors)
plt.figure()
plt.plot(f_gamma)
plt.stem(model.selected_sensors, np.ones_like(model.selected_sensors))

accuracy = metrics.accuracy_score(
    dz_te, model.predict(X_te[:, model.selected_sensors]))
print(accuracy)
Exemplo n.º 6
0
def test_basis_integration(basis, data):
    x, y, _ = data
    model = SSPOC(basis=basis, n_sensors=5)
    model.fit(x, y, quiet=True)

    check_is_fitted(model)