Exemplo n.º 1
0
def example():
    """
    example that plots the power spectrum of Mars topography data
    """
    # --- input data filename ---
    infile = '../../ExampleDataFiles/MarsTopo719.shape'
    coeffs, lmax = shtools.SHRead(infile, 719)
    lmax = coeffs.shape[1] - 1

    # --- plot grid ---
    grid = shtools.MakeGridDH(coeffs, lmax, csphase=-1)
    fig_map = plt.figure()
    plt.imshow(grid)

    # ---- compute spectrum ----
    ls = np.arange(lmax + 1)
    pspectrum = shtools.SHPowerSpectrum(coeffs)
    pdensity = shtools.SHPowerSpectrumDensity(coeffs)

    # ---- plot spectrum ----
    fig_spectrum, ax = plt.subplots(1, 1)
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlabel('degree l')
    ax.grid(True, which='both')

    ax.plot(ls[1:], pspectrum[1:], label='power per degree l')
    ax.plot(ls[1:], pdensity[1:], label='power per degree l and order m')

    ax.legend()

    fig_map.savefig('SHCtopography_mars.png')
    fig_spectrum.savefig('SHCspectrum_mars.png')
    print('mars topography and spectrum saved')
Exemplo n.º 2
0
def test_RealSpectralAnalysis():
    # ---- input parameters ----
    lmax = 5
    ls = np.arange(lmax + 1)
    mask = np.zeros((2, lmax + 1, lmax + 1), dtype=np.bool)
    for l in np.arange(lmax + 1):
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    print('\n---- testing SHPower/DensityL, SHPowerSpectrum/Density ----')
    print('generating normal distributed coefficients with variance 1...')
    coeffs1 = np.random.normal(size=(2, lmax + 1, lmax + 1))
    coeffs1[np.invert(mask)] = 0.

    spec1 = np.array([shtools.SHPowerL(coeffs1, l) for l in ls])
    spec2 = shtools.SHPowerSpectrum(coeffs1)
    print('tot power computed with SHPowerL={:2.2f}'.format(np.sum(spec1)))
    print('tot power computed with SHPowerSpectrum={:2.2f}'.format(
        np.sum(spec2)))

    spec1 = np.array([shtools.SHPowerDensityL(coeffs1, l) for l in ls])
    spec2 = shtools.SHPowerSpectrumDensity(coeffs1)
    print('tot power computed with SHPowerDensityL={:2.2f}'.format(
        np.sum(spec1 * (2 * ls + 1))))
    print('tot power computed with SHPowerSpectrumDensity={:2.2f}'.format(
        np.sum(spec2 * (2 * ls + 1))))

    print('\n---- testing SHCrossCrossPower/DensityL, ' +
          'SHCrossCrossPowerSpectrum/Density ----')
    print('generating two sets of normal distributed coefficients ' +
          'with variance 1...')
    coeffs2 = np.random.normal(size=(2, lmax + 1, lmax + 1))
    coeffs2[np.invert(mask)] = 0.

    spec1 = np.array([shtools.SHCrossPowerL(coeffs1, coeffs2, l) for l in ls])
    spec2 = shtools.SHCrossPowerSpectrum(coeffs1, coeffs2)
    print('tot cpower computed with SHCrossPowerL={:2.2f}'.format(
        np.sum(spec1)))
    print('tot cpower computed with SHCrossPowerSpectrum={:2.2f}'.format(
        np.sum(spec2)))

    spec1 = np.array(
        [shtools.SHCrossPowerDensityL(coeffs1, coeffs2, l) for l in ls])
    spec2 = shtools.SHCrossPowerSpectrumDensity(coeffs1, coeffs2)
    print('tot cpower computed with SHCrossPowerDensityL={:2.2f}'.format(
        np.sum(spec1 * (2 * ls + 1))))
    print(
        'tot cpower computed with SHCrossPowerSpectrumDensity={:2.2f}'.format(
            np.sum(spec2 * (2 * ls + 1))))

    print('\n---- testing SHAdmitCorr and SHConfidence ----')
    admit, dadmit, corr = shtools.SHAdmitCorr(coeffs1, coeffs2)
    confidence = np.array([shtools.SHConfidence(l, corr[l]) for l in ls])
    print('admittance:', admit)
    print('admittance error:', dadmit)
    print('correlation:', corr)
    print('confidence:', confidence)
Exemplo n.º 3
0
def TimingAccuracyDH(sampling=1):
    # ---- input parameters ----
    maxdeg = 2800
    ls = np.arange(maxdeg + 1)
    beta = 1.5
    print('Driscoll-Healy (real) sampling =', sampling)

    # ---- create mask to filter out m<=l ----
    mask = np.zeros((2, maxdeg + 1, maxdeg + 1), dtype=np.bool)
    mask[0, 0, 0] = True
    for l in ls:
        mask[:, l, :l + 1] = True
    mask[1, :, 0] = False

    # ---- create Gaussian powerlaw coefficients ----
    print('creating {:d} random coefficients'.format(2 * (maxdeg + 1) *
                                                     (maxdeg + 1)))
    np.random.seed(0)
    cilm = np.random.normal(loc=0., scale=1., size=(2, maxdeg + 1, maxdeg + 1))
    old_power = shtools.SHPowerSpectrum(cilm)
    new_power = 1. / (1. + ls)**beta  # initialize degrees > 0 to power-law
    cilm[:, :, :] *= np.sqrt(new_power / old_power)[None, :, None]
    cilm[~mask] = 0.

    # ---- time spherical harmonics transform for lmax set to increasing
    # ---- powers of 2.
    lmax = 2
    print('lmax    maxerror    rms         tinverse    tforward')
    while lmax <= maxdeg:
        # trim coefficients to lmax
        cilm_trim = cilm[:, :lmax + 1, :lmax + 1]
        mask_trim = mask[:, :lmax + 1, :lmax + 1]

        # synthesis / inverse
        tstart = time.time()
        grid = shtools.MakeGridDH(cilm_trim, sampling=sampling)
        tend = time.time()
        tinverse = tend - tstart

        # analysis / forward
        tstart = time.time()
        cilm2_trim = shtools.SHExpandDH(grid, sampling=sampling)
        tend = time.time()
        tforward = tend - tstart

        # compute error
        err = np.abs(cilm_trim[mask_trim] - cilm2_trim[mask_trim]) / \
            np.abs(cilm_trim[mask_trim])
        maxerr = err.max()
        rmserr = np.mean(err**2)

        print('{:4d}    {:1.2e}    {:1.2e}    {:1.1e}s    {:1.1e}s'.format(
            lmax, maxerr, rmserr, tinverse, tforward))
        lmax = lmax * 2