Exemplo n.º 1
0
    def get_l1(self, filepath, *args, **kwargs):
        """
        Read the Envisat SGDR file and transfers its content to a Level1Data instance
        :param filepath: The full file path to the netCDF file
        :return: The parsed (or empty) Level-1 data container
        """

        # Import here to avoid circular imports
        from pysiral.l1bdata import Level1bData

        # Store arguments
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Read the file
        # NOTE: This will create the variable `self.sgdr`
        self._read_sgdr()

        # Get metadata
        self._set_input_file_metadata()

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        logger.info("- Created L1 object in %.3f seconds" % self.timer.get_seconds())

        return self.l1
Exemplo n.º 2
0
    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Read the Envisat SGDR file and transfers its content to a Level1Data instance
        :param filepath: The full file path to the netCDF file
        :param polar_ocean_check: Mandatory parameter but will be ignored as ERS Data is full orbit
        :return: The parsed (or empty) Level-1 data container
        """

        # Store arguments
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Read the file
        # NOTE: This will create the variable `self.sgdr`
        self._read_sgdr()

        # Get metadata
        self._set_input_file_metadata()

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        self.log.info("- Created L1 object in %.3f seconds" %
                      self.timer.get_seconds())

        return self.l1
Exemplo n.º 3
0
    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Create a Level-1 data container from Sentinel-3 CODA L2WAT files
        :param filepath: The full file path to the netCDF file
        :param polar_ocean_check:
        :return: The parsed (or empty) Level-1 data container
        """

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Save filepath
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        # Input Validation
        if not os.path.isfile(filepath):
            msg = "Not a valid file: %s" % filepath
            self.log.warning(msg)
            self.error.add_error("invalid-filepath", msg)
            return self.empty

        # Parse xml header file
        self._parse_xml_manifest(filepath)

        # Parse the input netCDF file
        self._read_input_netcdf(filepath)
        if self.error.status:
            return self.empty

        # Get metadata
        self._set_input_file_metadata()

        # Test if input file contains data over polar oceans (optional)
        if polar_ocean_check is not None:
            has_polar_ocean_data = polar_ocean_check.has_polar_ocean_segments(
                self.l1.info)
            if not has_polar_ocean_data:
                self.timer.stop()
                return self.empty

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        self.log.info("- Created L1 object in %.3f seconds" %
                      self.timer.get_seconds())

        # Return the l1 object
        return self.l1
Exemplo n.º 4
0
    def l1_post_processing(self, l1_segments):
        """
        Apply the post-processing procedures defined in the l1p processor definition file.

        :param l1_segments: A list of Level-1 data objects
        :return: None, the l1_segments are changed in place
        """

        # Get the post processing options
        pre_processing_items = self.cfg.get("pre_processing_items", None)
        if pre_processing_items is None:
            logger.info("No pre processing items defined")
            return

        # Measure time for the different post processors
        timer = StopWatch()

        # Get the list of post-processing items
        for pp_item in pre_processing_items:
            timer.start()
            pp_class = get_cls(pp_item["module_name"],
                               pp_item["class_name"],
                               relaxed=False)
            post_processor = pp_class(**pp_item["options"])
            for l1 in l1_segments:
                post_processor.apply(l1)
            timer.stop()
            msg = "- L1 pre-processing item `%s` applied in %.3f seconds" % (
                pp_item["label"], timer.get_seconds())
            logger.info(msg)
Exemplo n.º 5
0
    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Main entry point to the CryoSat-2 Baseline-D Input Adapter
        :param filepath:
        :return:
        """

        timer = StopWatch()
        timer.start()

        # Save filepath
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        # Input Validation
        if not os.path.isfile(filepath):
            msg = "Not a valid file: %s" % filepath
            self.log.warning(msg)
            self.error.add_error("invalid-filepath", msg)
            return self.empty

        # Parse the input file
        self._read_input_netcdf(filepath, attributes_only=True)

        if self.error.status:
            return self.empty

        # Get metadata
        self._set_input_file_metadata()

        if polar_ocean_check is not None:
            has_polar_ocean_data = polar_ocean_check.has_polar_ocean_segments(
                self.l1.info)
            if not has_polar_ocean_data:
                timer.stop()
                return self.empty

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        timer.stop()
        self.log.info("- Created L1 object in %.3f seconds" %
                      timer.get_seconds())

        # Return the l1 object
        return self.l1
Exemplo n.º 6
0
    def __init__(self,
                 l1p_settings_id_or_file,
                 tcs,
                 tce,
                 exclude_month=None,
                 hemisphere="global",
                 platform=None,
                 output_handler_cfg=None,
                 source_repo_id=None):
        """
        The settings for the Level-1 pre-processor job
        :param l1p_settings_id_or_file: An id of an proc/l1 processor config file (filename excluding the .yaml
                                        extension) or an full filepath to a yaml config file
        :param tcs: [int list] Time coverage start (YYYY MM [DD])
        :param tce: [int list] Time coverage end (YYYY MM [DD]) [int list]
        :param exclude_month: [int list] A list of month that will be ignored
        :param hemisphere: [str] The target hemisphere (`north`, `south`, `global`:default).
        :param platform: [str] The target platform (pysiral id). Required if l1p settings files is valid for
                               multiple platforms (e.g. ERS-1/2, ...)
        :param output_handler_cfg: [dict] An optional dictionary with options of the output handler
                                   (`overwrite_protection`: [True, False], `remove_old`: [True, False])
        :param source_repo_id: [str] The tag in local_machine_def.yaml (l1b_repository.<platform>.<source_repo_id>)
                                  -> Overwrites the default source repo in the l1p settings
                                     (input_handler.options.local_machine_def_tag &
                                      output_handler.options.local_machine_def_tag)
        """

        super(Level1PreProcJobDef, self).__init__(self.__class__.__name__)
        self.error = ErrorStatus()

        # Get pysiral configuration
        # TODO: Move to global
        self._cfg = psrlcfg

        # Store command line options
        self._hemisphere = hemisphere
        self._platform = platform
        self._source_repo_id = source_repo_id

        # Parse the l1p settings file
        self.set_l1p_processor_def(l1p_settings_id_or_file)

        # Get full requested time range
        self._time_range = DatePeriod(tcs, tce)
        logger.info("Requested time range is %s" % self.time_range.label)

        # Store the data handler options
        if output_handler_cfg is None:
            output_handler_cfg = {}
        self._output_handler_cfg = output_handler_cfg

        # Measure execution time
        self.stopwatch = StopWatch()
Exemplo n.º 7
0
class Sentinel3CODAL2Wat(DefaultLoggingClass):
    def __init__(self, cfg, raise_on_error=False):
        """
        Input handler for Sentinel-3 L2WAT netCDF files from the CODA.
        :param cfg: A treedict object (root.input_handler.options) from the corresponding Level-1 pre-processor
                    config file
        :param raise_on_error: Boolean value if the class should raise an exception upon an error (default: False)
        """

        cls_name = self.__class__.__name__
        super(Sentinel3CODAL2Wat, self).__init__(cls_name)
        self.error = ErrorStatus(caller_id=cls_name)

        # Store arguments
        self.raise_on_error = raise_on_error
        self.cfg = cfg

        # Init main class variables
        self.nc = None

        # Debug variables
        self.timer = None

    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Create a Level-1 data container from Sentinel-3 CODA L2WAT files
        :param filepath: The full file path to the netCDF file
        :param polar_ocean_check:
        :return: The parsed (or empty) Level-1 data container
        """

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Save filepath
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        # Input Validation
        if not os.path.isfile(filepath):
            msg = "Not a valid file: %s" % filepath
            self.log.warning(msg)
            self.error.add_error("invalid-filepath", msg)
            return self.empty

        # Parse xml header file
        self._parse_xml_manifest(filepath)

        # Parse the input netCDF file
        self._read_input_netcdf(filepath)
        if self.error.status:
            return self.empty

        # Get metadata
        self._set_input_file_metadata()

        # Test if input file contains data over polar oceans (optional)
        if polar_ocean_check is not None:
            has_polar_ocean_data = polar_ocean_check.has_polar_ocean_segments(
                self.l1.info)
            if not has_polar_ocean_data:
                self.timer.stop()
                return self.empty

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        self.log.info("- Created L1 object in %.3f seconds" %
                      self.timer.get_seconds())

        # Return the l1 object
        return self.l1

    @staticmethod
    def interp_1Hz_to_20Hz(variable_1Hz, time_1Hz, time_20Hz, **kwargs):
        """
        Computes a simple linear interpolation to transform a 1Hz into a 20Hz variable
        :param variable_1Hz: an 1Hz variable array
        :param time_1Hz: 1Hz reference time
        :param time_20Hz: 20 Hz reference time
        :return: the interpolated 20Hz variable
        """
        error_status = False
        try:
            f = interpolate.interp1d(time_1Hz,
                                     variable_1Hz,
                                     bounds_error=False,
                                     **kwargs)
            variable_20Hz = f(time_20Hz)
        except ValueError:
            fill_value = np.nan
            variable_20Hz = np.full(time_20Hz.shape, fill_value)
            error_status = True
        return variable_20Hz, error_status

    @staticmethod
    def parse_sentinel3_l1b_xml_header(filename):
        """
        Reads the XML header file of a Sentinel 3 L1b Data set
        and returns the contents as an OrderedDict
        """
        with open(filename) as fd:
            content_odereddict = xmltodict.parse(fd.read())
        return content_odereddict[u'xfdu:XFDU']

    def _parse_xml_manifest(self, filepath):
        """
        Parse the Sentinel-3 XML header file and extract key attributes for filtering
        :param filepath: the filepath for the netcdf
        :return: None
        """
        # Retrieve header information from mission settings
        xml_header_file = self.cfg.xml_manifest
        dataset_folder = folder_from_filename(filepath)
        filename_header = os.path.join(dataset_folder, xml_header_file)
        self._xmlh = self.parse_sentinel3_l1b_xml_header(filename_header)

    def _get_xml_content(self, section_name, tag):
        """ Returns the generalProductInformation content of the xml manifest
        :return: dictionary
        """

        # Extract Metadata
        metadata = self._xmlh["metadataSection"]["metadataObject"]

        # Extract General Product Info
        index = self.cfg.xml_metadata_object_index[section_name]
        product_info = metadata[index]["metadataWrap"]["xmlData"]
        product_info = product_info[tag]

        return product_info

    def _read_input_netcdf(self, filepath):
        """
        Read the netCDF file via xarray
        :param filepath: The full filepath to the netCDF file
        :return: none
        """
        try:
            self.nc = xarray.open_dataset(filepath,
                                          decode_times=False,
                                          mask_and_scale=True)
        except:
            msg = "Error encountered by xarray parsing: %s" % filepath
            self.error.add_error("xarray-parse-error", msg)
            self.log.warning(msg)
            return

    def _set_input_file_metadata(self):
        """
        Populates the product info segment of the Level1Data object with information from
        the global attributes of the netCDF and content of the xml manifest
        :return: None
        """

        # Short cuts
        metadata = self.nc.attrs
        info = self.l1.info

        # Get xml manifest content
        product_info = self._get_xml_content(
            "generalProductInformation", "sentinel3:generalProductInformation")
        sral_info = self._get_xml_content("sralProductInformation",
                                          "sralProductInformation")

        # Processing environment metadata
        info.set_attribute("pysiral_version", pysiral_version)

        # General product metadata
        mission = metadata["mission_name"].lower().replace(" ", "")
        info.set_attribute("mission", str(mission))
        info.set_attribute("mission_sensor", "sral")
        info.set_attribute("mission_data_version", metadata["source"])
        info.set_attribute("orbit", metadata["absolute_rev_number"])
        info.set_attribute("cycle", metadata["cycle_number"])
        info.set_attribute("mission_data_source", metadata["product_name"])
        info.set_attribute(
            "timeliness", self.cfg.timeliness_dict[str(
                product_info["sentinel3:timeliness"])])

        # Time-Orbit Metadata
        lats = [
            float(metadata["first_meas_lat"]),
            float(metadata["last_meas_lat"])
        ]
        lons = [
            float(metadata["first_meas_lon"]),
            float(metadata["last_meas_lon"])
        ]
        info.set_attribute("start_time",
                           parse_datetime_str(metadata["first_meas_time"][4:]))
        info.set_attribute("stop_time",
                           parse_datetime_str(metadata["last_meas_time"][4:]))
        info.set_attribute("lat_min", np.amin(lats))
        info.set_attribute("lat_max", np.amax(lats))
        info.set_attribute("lon_min", np.amin(lons))
        info.set_attribute("lon_max", np.amax(lons))

        # Product Content Metadata
        for mode in ["sar", "sin", "lrm"]:
            percent_value = 0.0
            if mode == "sar":
                percent_value = 100.
            info.set_attribute("{}_mode_percent".format(mode), percent_value)
        info.set_attribute("open_ocean_percent",
                           float(sral_info["sral:openOceanPercentage"]))

    def _set_l1_data_groups(self):
        """
        Fill all data groups of the Level-1 data object with the content of the netCDF file. This is just the
        overview method, see specific sub-methods below
        :return: None
        """
        self._set_time_orbit_data_group()
        self._set_waveform_data_group()
        self._set_range_correction_group()
        self._set_surface_type_group()
        self._set_classifier_group()

    def _set_time_orbit_data_group(self):
        """
        Transfer the time orbit parameter from the netcdf to l1 data object
        :return: None
        """

        # Transfer the timestamp
        # NOTE: Here it is critical that the xarray does not automatically decodes time since it is
        #       difficult to work with the numpy datetime64 date format. Better to compute datetimes using
        #       a know num2date conversion
        utc_timestamp = num2date(self.nc.time_20_ku.values,
                                 units=self.nc.time_20_ku.units)
        self.l1.time_orbit.timestamp = utc_timestamp

        # Set the geolocation
        self.l1.time_orbit.set_position(self.nc.lon_20_ku.values,
                                        self.nc.lat_20_ku.values,
                                        self.nc.alt_20_ku.values,
                                        self.nc.orb_alt_rate_20_ku.values)

        # Set antenna attitude
        # NOTE: This are only available in 1Hz and need to be interpolated
        time_01, time_20 = self.nc.time_01.values, self.nc.time_20_ku.values
        pitch_angle_20, stat = self.interp_1Hz_to_20Hz(
            self.nc.off_nadir_pitch_angle_pf_01.values, time_01, time_20)
        roll_angle_20, stat = self.interp_1Hz_to_20Hz(
            self.nc.off_nadir_roll_angle_pf_01.values, time_01, time_20)
        yaw_angle_20, stat = self.interp_1Hz_to_20Hz(
            self.nc.off_nadir_yaw_angle_pf_01.values, time_01, time_20)
        self.l1.time_orbit.set_antenna_attitude(pitch_angle_20, roll_angle_20,
                                                yaw_angle_20)

    def _set_waveform_data_group(self):
        """
        Transfer of the waveform group to the Level-1 object. This includes
          1. the computation of waveform power in Watts
          2. the computation of the window delay in meter for each waveform bin
          3. extraction of the waveform valid flag
        :return: None
        """

        # Get the waveform
        # NOTE: The waveform is given in counts
        wfm_counts = self.nc.waveform_20_ku.values
        n_records, n_range_bins = wfm_counts.shape

        # Convert the waveform to power
        # TODO: This needs to be verified. Currently using the scale factor and documentation in netcdf unclear
        # From the documentation:
        # "This scaling factor represents the backscatter coefficient for a waveform amplitude equal to 1.
        #  It is corrected for AGC instrumental errors (agc_cor_20_ku) and internal calibration (sig0_cal_20_ku)"
        # NOTE: Make sure type of waveform is float and not double
        #       (double will cause issues with cythonized retrackers)
        wfm_power = np.ndarray(shape=wfm_counts.shape, dtype=np.float32)
        waveform_scale_factor = self.nc.scale_factor_20_ku.values
        for record in np.arange(n_records):
            wfm_power[record, :] = waveform_scale_factor[record] * wfm_counts[
                record, :].astype(float)

        # Get the window delay
        # "The tracker_range_20hz is the range measured by the onboard tracker
        #  as the window delay, corrected for instrumental effects and
        #  CoG offset"
        tracker_range_20hz = self.nc.tracker_range_20_ku.values
        wfm_range = np.ndarray(shape=wfm_counts.shape, dtype=np.float32)
        range_bin_index = np.arange(n_range_bins)
        for record in np.arange(n_records):
            wfm_range[record, :] = tracker_range_20hz[record] + \
                (range_bin_index*self.cfg.range_bin_width) - \
                (self.cfg.nominal_tracking_bin*self.cfg.range_bin_width)

        # Set the operation mode
        op_mode = self.nc.instr_op_mode_20_ku.values
        op_mode_translator = self.cfg.instr_op_mode_list
        radar_mode = np.array(
            [op_mode_translator[int(val)] for val in op_mode]).astype("int8")

        # Set the waveform
        self.l1.waveform.set_waveform_data(wfm_power, wfm_range, radar_mode)

        # Get the valid flags
        # TODO: Find a way to get a valid flag
        # measurement_confident_flag = self.nc.flag_mcd_20_ku.values
        # valid_flag = measurement_confident_flag == 0
        # self.l1.waveform.set_valid_flag(valid_flag)

    def _set_range_correction_group(self):
        """
        Transfer the range corrections defined in the l1p config file to the Level-1 object
        NOTE: The range corrections are all in 1 Hz and must be interpolated to 20Hz
        :return: None
        """

        # Get the reference times for interpolating the range corrections from 1Hz -> 20Hz
        time_1Hz = self.nc.time_01.values
        time_20Hz = self.nc.time_20_ku.values

        # Loop over all range correction variables defined in the processor definition file
        for key in self.cfg.range_correction_targets.keys():
            var_name = self.cfg.range_correction_targets[key]
            variable_1Hz = getattr(self.nc, var_name)
            variable_20Hz, error_status = self.interp_1Hz_to_20Hz(
                variable_1Hz.values, time_1Hz, time_20Hz)
            if error_status:
                msg = "- Error in 20Hz interpolation for variable `%s` -> set only dummy" % var_name
                self.log.warning(msg)
            self.l1.correction.set_parameter(key, variable_20Hz)

    def _set_surface_type_group(self):
        """
        Transfer of the surface type flag to the Level-1 object
        NOTE: In the current state (TEST dataset), the surface type flag is only 1 Hz. A nearest neighbour
              interpolation is used to get the 20Hz surface type flag.
        :return: None
        """

        # Set the flag
        for key in ESA_SURFACE_TYPE_DICT.keys():
            flag = self.nc.surf_type_20_ku.values == ESA_SURFACE_TYPE_DICT[key]
            self.l1.surface_type.add_flag(flag, key)

    def _set_classifier_group(self):
        """
        Transfer the classifiers defined in the l1p config file to the Level-1 object.
        NOTE: It is assumed that all classifiers are 20Hz
        In addition, a few legacy parameter are computed based on the waveform counts that is only available at
        this stage. Computation of other parameter such as sigma_0, leading_edge_width, ... are moved to the
        post-processing
        :return: None
        """
        # Loop over all classifier variables defined in the processor definition file
        for key in self.cfg.classifier_targets.keys():
            variable_20Hz = getattr(self.nc, self.cfg.classifier_targets[key])
            self.l1.classifier.add(variable_20Hz, key)

    @property
    def empty(self):
        """
        Default return object, if nodata should be returned
        :return: Representation of an empty object (None)
        """
        return None
Exemplo n.º 8
0
class ERSReaperSGDR(DefaultLoggingClass):
    """ Converts a Envisat SGDR object into a L1bData object """
    def __init__(self, cfg, raise_on_error=False):
        """
        Input handler for Sentinel-3 L2WAT netCDF files from the CODA.
        :param cfg: A treedict object (root.input_handler.options) from the corresponding Level-1 pre-processor
                    config file
        :param raise_on_error: Boolean value if the class should raise an exception upon an error (default: False)
        """

        cls_name = self.__class__.__name__
        super(ERSReaperSGDR, self).__init__(cls_name)
        self.error = ErrorStatus(caller_id=cls_name)

        # Store arguments
        self.raise_on_error = raise_on_error
        self.cfg = cfg

        # Debug variables
        self.timer = None

    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Read the Envisat SGDR file and transfers its content to a Level1Data instance
        :param filepath: The full file path to the netCDF file
        :param polar_ocean_check: Mandatory parameter but will be ignored as ERS Data is full orbit
        :return: The parsed (or empty) Level-1 data container
        """

        # Store arguments
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Read the file
        # NOTE: This will create the variable `self.sgdr`
        self._read_sgdr()

        # Get metadata
        self._set_input_file_metadata()

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        self.log.info("- Created L1 object in %.3f seconds" %
                      self.timer.get_seconds())

        return self.l1

    def _read_sgdr(self):
        """ Read the L1b file and create a ERS native L1b object """
        self.sgdr = ERSSGDR(self.cfg)
        self.sgdr.filename = self.filepath
        self.sgdr.parse()
        error_status = self.sgdr.get_status()
        if error_status:
            # TODO: Needs ErrorHandler
            raise IOError()
        self.sgdr.post_processing()

    def _set_input_file_metadata(self):
        """ Extract essential metadata information from SGDR file """
        info = self.l1.info
        sgdr = self.sgdr
        info.set_attribute("pysiral_version", psrlcfg.version)
        try:
            info.set_attribute(
                "mission", self.cfg.platform_name_dict[str(sgdr.nc.mission)])
        except KeyError:
            mission_id = self.sgdr.guess_mission_from_filename()
            info.set_attribute("mission",
                               self.cfg.platform_name_dict[str(mission_id)])

        info.set_attribute("mission_data_version", sgdr.nc.software_ver)
        info.set_attribute("orbit", sgdr.nc.abs_orbit)
        info.set_attribute("cycle", sgdr.nc.cycle)
        mission_data_source = Path(sgdr.nc.filename).name
        info.set_attribute("mission_data_source", mission_data_source)
        info.set_attribute("timeliness", self.cfg.timeliness)

    def _set_l1_data_groups(self):
        self._transfer_timeorbit()  # (lon, lat, alt, time)
        self._transfer_waveform_collection()  # (power, range)
        self._transfer_range_corrections()  # (range corrections)
        self._transfer_surface_type_data()  # (land flag, ocean flag, ...)
        self._transfer_classifiers()  # (beam parameters, flags, ...)

    def _transfer_timeorbit(self):
        """ Extracts the time/orbit data group from the SGDR data """

        # Transfer the orbit position
        self.l1.time_orbit.set_position(self.sgdr.nc.lon_20hz.flatten(),
                                        self.sgdr.nc.lat_20hz.flatten(),
                                        self.sgdr.nc.alt_20hz.flatten())

        # Transfer the timestamp
        sgdr_timestamp = self.sgdr.nc.time_20hz.flatten()
        units = self.cfg.sgdr_timestamp_units
        calendar = self.cfg.sgdr_timestamp_calendar
        timestamp = num2pydate(sgdr_timestamp, units, calendar)
        self.l1.time_orbit.timestamp = timestamp

        # Mandatory antenna pointing parameter (but not available for ERS)
        dummy_angle = np.full(timestamp.shape, 0.0)
        self.l1.time_orbit.set_antenna_attitude(dummy_angle, dummy_angle,
                                                dummy_angle)

        # Update meta data container
        self.l1.update_data_limit_attributes()

    def _transfer_waveform_collection(self):
        """ Transfers the waveform data (power & range for each range bin) """

        # Transfer the reformed 18Hz waveforms
        self.l1.waveform.set_waveform_data(self.sgdr.wfm_power,
                                           self.sgdr.wfm_range,
                                           self.sgdr.radar_mode)

        # Set valid flag to exclude calibration data
        # (see section 3.5 of Reaper handbook)
        tracking_state = self.sgdr.nc.alt_state_flag_20hz.flatten()
        valid = ORCondition()
        valid.add(tracking_state == 2)
        valid.add(tracking_state == 3)
        self.l1.waveform.set_valid_flag(valid.flag)

    def _transfer_range_corrections(self):
        """
        Transfer range correction data from the SGDR netCDF to the
        l1bdata object. The parameter are defined in
        config/mission_def.yaml for ers1/ers2
        -> ersX.settings.sgdr_range_correction_targets

        For a description of the parameter see section 3.10 in the
        REAPER handbook
        """
        grc_dict = self.cfg.range_correction_targets
        for name in grc_dict.keys():
            target_parameter = grc_dict[name]
            if target_parameter is None:
                continue
            correction = getattr(self.sgdr.nc, target_parameter)
            correction = np.repeat(correction, self.cfg.sgdr_n_blocks)
            self.l1.correction.set_parameter(name, correction)

    def _transfer_classifiers(self):
        """
        Transfer classifier parameter from the SGDR netCDF to the
        l1bdata object. Most parameter are defined in
        config/mission_def.yaml for ers1/ers2
        -> ersX.settings.sgdr_range_correction_targets
        """
        target_dict = self.cfg.classifier_targets
        for parameter_name in target_dict.keys():
            nc_parameter_name = target_dict[parameter_name]
            nc_parameter = getattr(self.sgdr.nc, nc_parameter_name)
            self.l1.classifier.add(nc_parameter.flatten(), parameter_name)

    def _transfer_surface_type_data(self):
        surface_type = self.sgdr.nc.surface_type
        surface_type = np.repeat(surface_type, self.cfg.sgdr_n_blocks)
        for key in ESA_SURFACE_TYPE_DICT.keys():
            flag = surface_type == ESA_SURFACE_TYPE_DICT[key]
            self.l1.surface_type.add_flag(flag, key)

    @property
    def empty(self):
        """
        Default return object, if nodata should be returned
        :return: Representation of an empty object (None)
        """
        return None
Exemplo n.º 9
0
    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Main entry point to the CryoSat-2 Baseline-D Input Adapter
        :param filepath:
        :param polar_ocean_check:
        :return:
        """

        timer = StopWatch()
        timer.start()

        # Save filepath
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        # Input Validation
        if not Path(filepath).is_file():
            msg = "Not a valid file: %s" % filepath
            logger.warning(msg)
            self.error.add_error("invalid-filepath", msg)
            return self.empty

        # Parse the input file
        self._read_input_netcdf(filepath, attributes_only=True)
        if self.nc is None:
            return self.empty

        # CAVEAT: An issue has been identified with baseline-D L1b data when the orbit solution
        # is based on predicted orbits and not the DORIS solution (Nov 2020).
        # The source of the orbit data can be identified by the `vector_source` global attribute
        # in the L1b source files. This can take/should take the following values:
        #
        #     nrt:  "fos predicted" (predicted orbit)
        #           "doris_navigator" (DORIS Nav solution)
        #
        #     rep:  "doris_precise" (final and precise DORIS solution)
        #
        # To prevent l1 data with erroneous orbit solution entering the processing chain, l1 data
        # with the predicted orbit can be excluded here. The process of exclusion requires to set
        # a flag in the l1 processor definition for the input handler:
        #
        #   exclude_predicted_orbits: True
        #
        exclude_predicted_orbits = self.cfg.get("exclude_predicted_orbits",
                                                False)
        is_predicted_orbit = self.nc.vector_source.lower().strip(
        ) == "fos predicted"
        logger.debug(self.nc.vector_source.lower().strip())
        if is_predicted_orbit and exclude_predicted_orbits:
            logger.warning("Predicted orbit solution detected -> skip file")
            return self.empty

        # Get metadata
        self._set_input_file_metadata()
        if polar_ocean_check is not None:
            has_polar_ocean_data = polar_ocean_check.has_polar_ocean_segments(
                self.l1.info)
            if not has_polar_ocean_data:
                timer.stop()
                return self.empty

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        timer.stop()
        logger.info("- Created L1 object in %.3f seconds" %
                    timer.get_seconds())

        # Return the l1 object
        return self.l1
Exemplo n.º 10
0
class EnvisatSGDRNC(DefaultLoggingClass):
    """ Converts a Envisat SGDR object into a L1bData object """

    def __init__(self, cfg, raise_on_error=False):
        """
        Input handler for Sentinel-3 L2WAT netCDF files from the CODA.
        :param cfg: A treedict object (root.input_handler.options) from the corresponding Level-1 pre-processor
                    config file
        :param raise_on_error: Boolean value if the class should raise an exception upon an error (default: False)
        """

        cls_name = self.__class__.__name__
        super(EnvisatSGDRNC, self).__init__(cls_name)
        self.error = ErrorStatus(caller_id=cls_name)

        # Store arguments
        self.raise_on_error = raise_on_error
        self.cfg = cfg

        # Debug variables
        self.timer = None

        # Properties
        self.filepath = None
        self.l1 = None

    def get_l1(self, filepath, polar_ocean_check=None):
        """
        Read the Envisat SGDR file and transfers its content to a Level1Data instance
        :param filepath: The full file path to the netCDF file
        :param polar_ocean_check: Mandatory parameter but will be ignored as ERS Data is full orbit
        :return: The parsed (or empty) Level-1 data container
        """

        # Store arguments
        self.filepath = filepath

        # Create an empty Level-1 data object
        self.l1 = Level1bData()

        #  for debug purposes
        self.timer = StopWatch()
        self.timer.start()

        # Read the file
        # NOTE: This will create the variable `self.sgdr`
        self._read_sgdr()

        # Get metadata
        self._set_input_file_metadata()

        # Polar ocean check passed, now fill the rest of the l1 data groups
        self._set_l1_data_groups()

        self.timer.stop()
        logger.info("- Created L1 object in %.3f seconds" % self.timer.get_seconds())

        return self.l1

    def _read_sgdr(self):
        """ Read the L1b file and create a ERS native L1b object """
        self.sgdr = ReadNC(self.filepath, nan_fill_value=True)

    def _set_input_file_metadata(self):
        """ Extract essential metadata information from SGDR file """
        info = self.l1.info
        sgdr = self.sgdr
        info.set_attribute("pysiral_version", psrlcfg.version)
        info.set_attribute("mission", "envisat")
        info.set_attribute("mission_data_version", sgdr.software_version)
        info.set_attribute("orbit", sgdr.absolute_orbit_number)
        info.set_attribute("cycle", sgdr.cycle_number)
        info.set_attribute("mission_data_source", sgdr.product_name)
        info.set_attribute("timeliness", self.cfg.timeliness)

        # # Time-Orbit Metadata
        # lats = [float(sgdr.nc.ra0_first_lat), float(sgdr.nc.ra0_last_lat)]
        # lons = [float(sgdr.nc.ra0_first_long), float(sgdr.nc.ra0_last_long)]
        # info.set_attribute("start_time", parse_datetime_str(sgdr.nc.ra0_first_record_time))
        # info.set_attribute("stop_time", parse_datetime_str(sgdr.nc.ra0_last_record_time))
        # info.set_attribute("lat_min", np.amin(lats))
        # info.set_attribute("lat_max", np.amax(lats))
        # info.set_attribute("lon_min", np.amin(lons))
        # info.set_attribute("lon_max", np.amax(lons))

    def _set_l1_data_groups(self):
        self._transfer_timeorbit()            # (lon, lat, alt, time)
        self._transfer_waveform_collection()  # (power, range)
        self._transfer_range_corrections()    # (range corrections)
        self._transfer_surface_type_data()    # (land flag, ocean flag, ...)
        self._transfer_classifiers()          # (beam parameters, flags, ...)

    def _transfer_timeorbit(self):
        """ Extracts the time/orbit data group from the SGDR data """

        # Transfer the orbit position
        self.l1.time_orbit.set_position(self.sgdr.lon_20, self.sgdr.lat_20, self.sgdr.alt_20)

        # Transfer the timestamp
        sgdr_timestamp = self.sgdr.time_20
        units = self.cfg.sgdr_timestamp_units
        calendar = self.cfg.sgdr_timestamp_calendar
        timestamp = num2pydate(sgdr_timestamp, units, calendar)
        self.l1.time_orbit.timestamp = timestamp

        # Mandatory antenna pointing parameter (but not available for ERS)
        dummy_angle = np.full(timestamp.shape, 0.0)
        self.l1.time_orbit.set_antenna_attitude(dummy_angle, dummy_angle, dummy_angle)

        # Update meta data container
        self.l1.update_data_limit_attributes()

    def _transfer_waveform_collection(self):
        """ Transfers the waveform data (power & range for each range bin) """

        # Transfer the reformed 18Hz waveforms
        # "waveform samples (I2+Q2, 1/2048 FFT power unit): 18 Hz Ku band";
        # "the echo is corrected for the intermediate frequency filter effect";
        wfm_power = self.sgdr.waveform_fft_20_ku
        n_records, n_range_bins = wfm_power.shape

        # Compute the window delay and the range values
        window_delay_m = get_envisat_window_delay(
            self.sgdr.tracker_range_20_ku,
            self.sgdr.dop_cor_20_ku,
            self.sgdr.dop_slope_cor_20_ku,
            nominal_tracking_bin=self.cfg.nominal_tracking_bin,
            bin_width_meter=self.cfg.bin_width_meter)

        # Compute the range value for each range bin of the 18hz waveform
        wfm_range = get_envisat_wfm_range(
            window_delay_m, n_range_bins,
            bin_width_meter=self.cfg.bin_width_meter)

        # Transfer data to the waveform group
        self.l1.waveform.set_waveform_data(wfm_power, wfm_range, self.cfg.radar_mode)

        # Set valid flag to exclude calibration data
        # (see section 3.5 of Reaper handbook)
        valid_flag = np.logical_not(self.sgdr.waveform_fault_id_20.astype(bool))
        self.l1.waveform.set_valid_flag(valid_flag)

    def _transfer_range_corrections(self):
        """
        Transfer range correction data from the SGDR netCDF to the
        l1bdata object. The parameter are defined in
        config/mission_def.yaml for ers1/ers2
        -> ersX.settings.sgdr_range_correction_targets

        For a description of the parameter see section 3.10 in the
        REAPER handbook
        """

        # Get the reference times for interpolating the range corrections from 1Hz -> 20Hz
        time_1Hz = np.array(self.sgdr.time_01)
        time_20Hz = np.array(self.sgdr.time_20)

        # Loop over all range correction in config file
        grc_dict = self.cfg.range_correction_targets
        for name in grc_dict.keys():

            # Get the variable
            target_parameter = grc_dict[name]
            if target_parameter is None:
                continue
            correction = np.array(getattr(self.sgdr, target_parameter))

            # Debug code
            # -> in this case discard the variable
            n_nans = len(np.where(np.isnan(correction))[0])
            if 500 < n_nans < len(correction):
                msg = "Significant number of NaNs (%g) in range correction variable: %s"
                msg = msg % (n_nans, target_parameter)
                logger.warning(msg)
            elif n_nans == len(correction):
                msg = "All-NaN array encountered in range correction variable: %s"
                msg = msg % target_parameter
                logger.warning(msg)

            # Some of the Envisat range corrections are 1Hz others 20Hz
            # -> Those with "_01" in the variable name need to be
            # extrapolated to 20 Hz
            error = False
            if re.search(self.cfg.variable_identifier_1Hz, target_parameter):
                correction, error = self.interp_1Hz_to_20Hz(correction, time_1Hz, time_20Hz,
                                                            fill_on_error_value=0.0)
            if error:
                msg = "Failing to create 20Hz range correction variable for %s" % target_parameter
                logger.warning(msg)

            # Interpolate NaN's or return a zero-filled array for all-nan input variables
            correction_filtered = self.find_and_interpolate_nans(correction, fill_on_error_value=0.0)

            # Debug code
            # -> in this case discard the variable
            n_nans = len(np.where(np.isnan(correction_filtered))[0])
            if n_nans > 0:
                msg = "Remaining NaN's after filtering in %s" % target_parameter
                logger.warning(msg)

            # Set the parameter
            self.l1.correction.set_parameter(name, correction_filtered)

    def _transfer_classifiers(self):
        """
        Transfer classifier parameter from the SGDR netCDF to the
        l1bdata object. Most parameter are defined in
        config/mission_def.yaml for ers1/ers2
        -> ersX.settings.sgdr_range_correction_targets
        """
        target_dict = self.cfg.classifier_targets
        for parameter_name in target_dict.keys():
            nc_parameter_name = target_dict[parameter_name]
            nc_parameter = getattr(self.sgdr, nc_parameter_name)
            self.l1.classifier.add(nc_parameter.flatten(), parameter_name)

    def _transfer_surface_type_data(self):
        surface_type = self.sgdr.surf_class_20
        for key in ESA_SURFACE_TYPE_DICT.keys():
            flag = surface_type == ESA_SURFACE_TYPE_DICT[key]
            self.l1.surface_type.add_flag(flag, key)

    @staticmethod
    def find_and_interpolate_nans(variable, fill_on_error_value=np.nan):
        """
        Replace NaN's in variable with linear interpolated values
        :param variable:
        :return: interpolated variable
        """
        is_nan = np.isnan(variable)
        n_nans = len(np.where(is_nan)[0])
        if n_nans == 0:
            variable_filtered = variable
        else:
            x = np.arange(len(variable))
            valid = np.where(np.logical_not(is_nan))[0]
            try:
                f = interpolate.interp1d(x[valid], variable[valid], fill_value="extrapolate",
                                         bounds_error=False)
                variable_filtered = f(x)
            except ValueError:
                variable_filtered = np.full(variable.shape, fill_on_error_value)
        return variable_filtered

    @staticmethod
    def interp_1Hz_to_20Hz(variable_1Hz, time_1Hz, time_20Hz, fill_on_error_value=np.nan, **kwargs):
        """
        Computes a simple linear interpolation to transform a 1Hz into a 20Hz variable
        :param variable_1Hz: an 1Hz variable array
        :param time_1Hz: 1Hz reference time
        :param time_20Hz: 20 Hz reference time
        :return: the interpolated 20Hz variable
        """
        error_status = False
        try:
            is_valid = np.logical_and(np.isfinite(time_1Hz), np.isfinite(variable_1Hz))
            valid_indices = np.where(is_valid)[0]
            f = interpolate.interp1d(time_1Hz[valid_indices], variable_1Hz[valid_indices],
                                     fill_value="extrapolate", bounds_error=False, **kwargs)
            variable_20Hz = f(time_20Hz)
        except ValueError:
            variable_20Hz = np.full(time_20Hz.shape, fill_on_error_value)
            error_status = True
        return variable_20Hz, error_status

    @property
    def empty(self):
        """
        Default return object, if nodata should be returned
        :return: Representation of an empty object (None)
        """
        return None