def test_sampling_max_samples():
    domain = Domain.make([], ["x", "y"], real_bounds=(0, 1))
    x, y = domain.get_symbols()
    support = smt.FALSE()
    try:
        positive(10, domain, support, max_samples=100000)
        assert False
    except SamplingError:
        assert True
Exemplo n.º 2
0
def generate_xor(n):
    domain = make_domain(n)
    symbols = domain.get_symbols(domain.real_vars)
    x, symbols = symbols[0], symbols[1:]
    bounds = make_distinct_bounds(domain)
    terms = [x <= v for v in symbols]
    xor = smt.FALSE()
    for term in terms:
        xor = (xor | term) & ~(xor & term)

    return Density(flip_domain(domain), bounds & xor, smt.Real(1.0))
Exemplo n.º 3
0
def xor(n):
    domain = make_domain(n)
    symbols = domain.get_symbols(domain.real_vars)
    x, symbols = symbols[0], symbols[1:]
    bounds = make_distinct_bounds(domain)
    terms = [x <= v for v in symbols]
    xor = smt.FALSE()
    for term in terms:
        xor = (xor | term) & ~(xor & term)

    flipped_domain = Domain(list(reversed([v for v in domain.variables if v != "x"])) + ["x"], domain.var_types, domain.var_domains)
    return FileDensity(flipped_domain, bounds & xor, smt.Real(1.0))
Exemplo n.º 4
0
    def query_dip_generator(self):
        dis_boolean = []

        for d in range(1, self.unroll_depth + 1):
            dip_boolean = []
            for w in self.obf_cir.input_wires:
                f = pystm.Symbol(w + '@{}'.format(d))
                if self.solver_obf.get_py_value(f):
                    dip_boolean.append(pystm.TRUE())
                else:
                    dip_boolean.append(pystm.FALSE())
            dis_boolean.append(dip_boolean)

        return dis_boolean
Exemplo n.º 5
0
def find_cnf(data, domain, active_indices, solver, n_c, n_h):
    # Constants
    n_b_original = len(domain.bool_vars)
    n_b = n_b_original * 2
    n_r = len(domain.real_vars)
    n_d = len(data)

    real_features = [[row[v] for v in domain.real_vars] for row, _ in data]
    bool_features = [[row[v] for v in domain.bool_vars] for row, _ in data]
    labels = [row[1] for row in data]

    # Variables
    a_hr = [[
        smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
    ] for h in range(n_h)]
    b_h = [smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h)]
    s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
            for c in range(n_c)]
    s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
            for c in range(n_c)]

    # Aux variables
    s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
            for i in range(n_d)]
    s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
            for i in range(n_d)]

    # Constraints
    for i in active_indices:
        x_r, x_b, label = real_features[i], bool_features[i], labels[i]

        for h in range(n_h):
            sum_coefficients = smt.Plus(
                [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
            if label:
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients + DELTA <= b_h[h]))
            else:
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients - DELTA <= b_h[h]))

        for c in range(n_c):
            solver.add_assertion(
                smt.Iff(
                    s_ic[i][c],
                    smt.Or([smt.FALSE()] + [(s_ch[c][h] & s_ih[i][h])
                                            for h in range(n_h)] +
                           [s_cb[c][b]
                            for b in range(n_b_original) if x_b[b]] + [
                                s_cb[c][b] for b in range(n_b_original, n_b)
                                if not x_b[b - n_b_original]
                            ])))

        if label:
            solver.add_assertion(smt.And([s_ic[i][c] for c in range(n_c)]))
        else:
            solver.add_assertion(smt.Or([~s_ic[i][c] for c in range(n_c)]))

    if not solver.solve():
        return None
    model = solver.get_model()

    x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
    half_spaces = [
        smt.Plus([model.get_value(a_hr[h][r]) * x_vars[r]
                  for r in range(n_r)]) <= model.get_value(b_h[h])
        for h in range(n_h)
    ]

    b_vars = [
        domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
    ]
    bool_literals = [b_vars[b] for b in range(n_b_original)]
    bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

    conjunctions = [
        [half_spaces[h]
         for h in range(n_h) if model.get_py_value(s_ch[c][h])] + [
             bool_literals[b]
             for b in range(n_b) if model.get_py_value(s_cb[c][b])
         ] for c in range(n_c)
    ]

    return smt.And([smt.Or(conjunction) for conjunction in conjunctions])
Exemplo n.º 6
0
    def learn_partial(self, solver, domain: Domain, data: np.ndarray,
                      labels: np.ndarray, new_active_indices: Set):

        # Constants
        n_b_original = len(domain.bool_vars)
        n_b = n_b_original * 2
        n_r = len(domain.real_vars)

        n_h_original = self.half_space_count if n_r > 0 else 0
        n_h = n_h_original * 2 if self.allow_negations else n_h_original

        n_c = self.conjunction_count
        n_d = data.shape[0]

        real_indices = np.array(
            [domain.var_types[v] == smt.REAL for v in domain.variables])
        real_features = data[:, real_indices]
        bool_features = data[:, np.logical_not(real_indices)]

        # Variables
        a_hr = [[
            smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
        ] for h in range(n_h_original)]
        b_h = [
            smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h_original)
        ]
        s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
                for c in range(n_c)]
        s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
                for c in range(n_c)]

        # Aux variables
        s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
                for i in range(n_d)]
        s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
                for i in range(n_d)]

        def pair(real: bool, c: int, index: int) -> Tuple[FNode, FNode]:
            if real:
                return s_ch[c][index], s_ch[c][index + n_h_original]
            else:
                return s_cb[c][index], s_cb[c][index + n_b_original]

        def order_equal(pair1, pair2):
            x_t, x_f, y_t, y_f = pair1 + pair2
            return smt.Iff(x_t, y_t) & smt.Iff(x_f, y_f)

        def order_geq(pair1, pair2):
            x_t, x_f, y_t, y_f = pair1 + pair2
            return x_t | y_f | ((~x_f) & (~y_t))

        def pairs(c: int) -> List[Tuple[FNode, FNode]]:
            return [pair(True, c, i) for i in range(n_h_original)
                    ] + [pair(False, c, i) for i in range(n_b_original)]

        def order_geq_lex(c1: int, c2: int):
            pairs_c1, pairs_c2 = pairs(c1), pairs(c2)
            assert len(pairs_c1) == len(pairs_c2)
            constraints = smt.TRUE()
            for j in range(len(pairs_c1)):
                condition = smt.TRUE()
                for i in range(j):
                    condition &= order_equal(pairs_c1[i], pairs_c2[i])
                constraints &= smt.Implies(condition,
                                           order_geq(pairs_c1[j], pairs_c2[j]))
            return constraints

        # Constraints
        for i in new_active_indices:
            x_r, x_b, label = [float(val) for val in real_features[i]
                               ], bool_features[i], labels[i]

            for h in range(n_h_original):
                sum_coefficients = smt.Plus(
                    [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients <= b_h[h]))

            for h in range(n_h_original, n_h):
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], ~s_ih[i][h - n_h_original]))

            for c in range(n_c):
                solver.add_assertion(
                    smt.Iff(
                        s_ic[i][c],
                        smt.
                        Or([smt.FALSE()] + [(s_ch[c][h] & s_ih[i][h])
                                            for h in range(n_h)] +
                           [s_cb[c][b]
                            for b in range(n_b_original) if x_b[b]] + [
                                s_cb[c][b] for b in range(n_b_original, n_b)
                                if not x_b[b - n_b_original]
                            ])))

            # --- [start] symmetry breaking ---
            # Mutually exclusive
            if "m" in self.symmetries:
                for c in range(n_c):
                    for h in range(n_h_original):
                        solver.add_assertion(~(s_ch[c][h]
                                               & s_ch[c][h + n_h_original]))
                    for b in range(n_b_original):
                        solver.add_assertion(~(s_cb[c][b]
                                               & s_cb[c][b + n_b_original]))

            # Normalized
            if "n" in self.symmetries:
                for h in range(n_h_original):
                    solver.add_assertion(
                        smt.Equals(b_h[h], smt.Real(1.0))
                        | smt.Equals(b_h[h], smt.Real(0.0)))

            # Vertical symmetries
            if "v" in self.symmetries:
                for c in range(n_c - 1):
                    solver.add_assertion(order_geq_lex(c, c + 1))

            # Horizontal symmetries
            if "h" in self.symmetries:
                for h in range(n_h_original - 1):
                    solver.add_assertion(a_hr[h][0] >= a_hr[h + 1][0])
            # --- [end] symmetry breaking ---

            if label:
                solver.add_assertion(smt.And([s_ic[i][c] for c in range(n_c)]))
            else:
                solver.add_assertion(smt.Or([~s_ic[i][c] for c in range(n_c)]))

        solver.solve()
        model = solver.get_model()

        x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
        half_spaces = [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) <= model.get_value(b_h[h])
            for h in range(n_h_original)
        ] + [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) > model.get_value(b_h[h])
            for h in range(n_h - n_h_original)
        ]

        b_vars = [
            domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
        ]
        bool_literals = [b_vars[b] for b in range(n_b_original)]
        bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

        conjunctions = [[
            half_spaces[h]
            for h in range(n_h) if model.get_py_value(s_ch[c][h])
        ] + [
            bool_literals[b]
            for b in range(n_b) if model.get_py_value(s_cb[c][b])
        ] for c in range(n_c)]

        return smt.And([smt.Or(conjunction) for conjunction in conjunctions])
Exemplo n.º 7
0
    def learn_partial(self, solver, domain, data, new_active_indices):
        # Constants
        n_b_original = len(domain.bool_vars)
        n_b = n_b_original * 2
        n_r = len(domain.real_vars)

        n_h_original = self.half_space_count if n_r > 0 else 0
        n_h = n_h_original * 2 if self.allow_negations else n_h_original

        n_c = self.conjunction_count
        n_d = len(data)

        real_features = [[row[v] for v in domain.real_vars] for row, _ in data]
        bool_features = [[row[v] for v in domain.bool_vars] for row, _ in data]
        labels = [row[1] for row in data]

        # Variables
        a_hr = [[
            smt.Symbol("a_hr[{}][{}]".format(h, r), REAL) for r in range(n_r)
        ] for h in range(n_h_original)]
        b_h = [
            smt.Symbol("b_h[{}]".format(h), REAL) for h in range(n_h_original)
        ]
        s_ch = [[smt.Symbol("s_ch[{}][{}]".format(c, h)) for h in range(n_h)]
                for c in range(n_c)]
        s_cb = [[smt.Symbol("s_cb[{}][{}]".format(c, b)) for b in range(n_b)]
                for c in range(n_c)]

        # Aux variables
        s_ih = [[smt.Symbol("s_ih[{}][{}]".format(i, h)) for h in range(n_h)]
                for i in range(n_d)]
        s_ic = [[smt.Symbol("s_ic[{}][{}]".format(i, c)) for c in range(n_c)]
                for i in range(n_d)]

        # Constraints
        for i in new_active_indices:
            x_r, x_b, label = real_features[i], bool_features[i], labels[i]

            for h in range(n_h_original):
                sum_coefficients = smt.Plus(
                    [a_hr[h][r] * smt.Real(x_r[r]) for r in range(n_r)])
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], sum_coefficients <= b_h[h]))

            for h in range(n_h_original, n_h):
                solver.add_assertion(
                    smt.Iff(s_ih[i][h], ~s_ih[i][h - n_h_original]))

            for c in range(n_c):
                solver.add_assertion(
                    smt.Iff(
                        s_ic[i][c],
                        smt.
                        Or([smt.FALSE()] + [(s_ch[c][h] & s_ih[i][h])
                                            for h in range(n_h)] +
                           [s_cb[c][b]
                            for b in range(n_b_original) if x_b[b]] + [
                                s_cb[c][b] for b in range(n_b_original, n_b)
                                if not x_b[b - n_b_original]
                            ])))

            # for c in range(n_c):
            #     for h in range(n_h_original):
            #         solver.add_assertion(~(s_ch[c][h] & s_ch[c][h + n_h_original]))
            #     for b in range(n_b_original):
            #         solver.add_assertion(~(s_cb[c][b] & s_cb[c][b + n_b_original]))

            if label:
                solver.add_assertion(smt.And([s_ic[i][c] for c in range(n_c)]))
            else:
                solver.add_assertion(smt.Or([~s_ic[i][c] for c in range(n_c)]))

        solver.solve()
        model = solver.get_model()

        x_vars = [domain.get_symbol(domain.real_vars[r]) for r in range(n_r)]
        half_spaces = [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) <= model.get_value(b_h[h])
            for h in range(n_h_original)
        ] + [
            smt.Plus(
                [model.get_value(a_hr[h][r]) * x_vars[r]
                 for r in range(n_r)]) > model.get_value(b_h[h])
            for h in range(n_h - n_h_original)
        ]

        b_vars = [
            domain.get_symbol(domain.bool_vars[b]) for b in range(n_b_original)
        ]
        bool_literals = [b_vars[b] for b in range(n_b_original)]
        bool_literals += [~b_vars[b] for b in range(n_b - n_b_original)]

        conjunctions = [[
            half_spaces[h]
            for h in range(n_h) if model.get_py_value(s_ch[c][h])
        ] + [
            bool_literals[b]
            for b in range(n_b) if model.get_py_value(s_cb[c][b])
        ] for c in range(n_c)]

        return smt.And([smt.Or(conjunction) for conjunction in conjunctions])