Exemplo n.º 1
0
    def _is_monotonic_decreasing(self) -> Series:
        window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1)

        cond = SF.lit(True)
        has_not_null = SF.lit(True)
        for scol in self._internal.index_spark_columns[::-1]:
            data_type = self._internal.spark_type_for(scol)
            prev = F.lag(scol, 1).over(window)
            compare = MultiIndex._comparator_for_monotonic_increasing(data_type)
            # Since pandas 1.1.4, null value is not allowed at any levels of MultiIndex.
            # Therefore, we should check `has_not_null` over the all levels.
            has_not_null = has_not_null & scol.isNotNull()
            cond = F.when(scol.eqNullSafe(prev), cond).otherwise(compare(scol, prev, Column.__lt__))

        cond = has_not_null & (prev.isNull() | cond)

        cond_name = verify_temp_column_name(
            self._internal.spark_frame.select(self._internal.index_spark_columns),
            "__is_monotonic_decreasing_cond__",
        )

        sdf = self._internal.spark_frame.select(
            self._internal.index_spark_columns + [cond.alias(cond_name)]
        )

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[
                scol_for(sdf, col) for col in self._internal.index_spark_column_names
            ],
            index_names=self._internal.index_names,
            index_fields=self._internal.index_fields,
        )

        return first_series(DataFrame(internal))
Exemplo n.º 2
0
    def intersection(self, other: Union[DataFrame, Series, Index, List]) -> "MultiIndex":
        """
        Form the intersection of two Index objects.

        This returns a new Index with elements common to the index and `other`.

        Parameters
        ----------
        other : Index or array-like

        Returns
        -------
        intersection : MultiIndex

        Examples
        --------
        >>> midx1 = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
        >>> midx2 = ps.MultiIndex.from_tuples([("c", "z"), ("d", "w")])
        >>> midx1.intersection(midx2).sort_values()  # doctest: +SKIP
        MultiIndex([('c', 'z')],
                   )
        """
        if isinstance(other, Series) or not is_list_like(other):
            raise TypeError("other must be a MultiIndex or a list of tuples")
        elif isinstance(other, DataFrame):
            raise ValueError("Index data must be 1-dimensional")
        elif isinstance(other, MultiIndex):
            spark_frame_other = other.to_frame().to_spark()
            keep_name = self.names == other.names
        elif isinstance(other, Index):
            # Always returns an empty MultiIndex if `other` is Index.
            return cast(MultiIndex, self.to_frame().head(0).index)
        elif not all(isinstance(item, tuple) for item in other):
            raise TypeError("other must be a MultiIndex or a list of tuples")
        else:
            other = MultiIndex.from_tuples(list(other))
            spark_frame_other = cast(MultiIndex, other).to_frame().to_spark()
            keep_name = True

        index_fields = self._index_fields_for_union_like(other, func_name="intersection")

        default_name: List[Name] = [SPARK_INDEX_NAME_FORMAT(i) for i in range(self.nlevels)]
        spark_frame_self = self.to_frame(name=default_name).to_spark()
        spark_frame_intersected = spark_frame_self.intersect(spark_frame_other)
        if keep_name:
            index_names = self._internal.index_names
        else:
            index_names = None

        internal = InternalFrame(
            spark_frame=spark_frame_intersected,
            index_spark_columns=[
                scol_for(spark_frame_intersected, cast(str, col)) for col in default_name
            ],
            index_names=index_names,
            index_fields=index_fields,
        )
        return cast(MultiIndex, DataFrame(internal).index)
Exemplo n.º 3
0
    def attach_id_column(self, id_type: str, column: Name) -> "DataFrame":
        """
        Attach a column to be used as identifier of rows similar to the default index.

        See also `Default Index type
        <https://koalas.readthedocs.io/en/latest/user_guide/options.html#default-index-type>`_.

        Parameters
        ----------
        id_type : string
            The id type.

            - 'sequence' : a sequence that increases one by one.

              .. note:: this uses Spark's Window without specifying partition specification.
                  This leads to move all data into single partition in single machine and
                  could cause serious performance degradation.
                  Avoid this method against very large dataset.

            - 'distributed-sequence' : a sequence that increases one by one,
              by group-by and group-map approach in a distributed manner.
            - 'distributed' : a monotonically increasing sequence simply by using PySpark’s
              monotonically_increasing_id function in a fully distributed manner.

        column : string or tuple of string
            The column name.

        Returns
        -------
        DataFrame
            The DataFrame attached the column.

        Examples
        --------
        >>> df = ps.DataFrame({"x": ['a', 'b', 'c']})
        >>> df.pandas_on_spark.attach_id_column(id_type="sequence", column="id")
           x  id
        0  a   0
        1  b   1
        2  c   2

        >>> df.pandas_on_spark.attach_id_column(id_type="distributed-sequence", column=0)
           x  0
        0  a  0
        1  b  1
        2  c  2

        >>> df.pandas_on_spark.attach_id_column(id_type="distributed", column=0.0)
        ... # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
           x  0.0
        0  a  ...
        1  b  ...
        2  c  ...

        For multi-index columns:

        >>> df = ps.DataFrame({("x", "y"): ['a', 'b', 'c']})
        >>> df.pandas_on_spark.attach_id_column(id_type="sequence", column=("id-x", "id-y"))
           x id-x
           y id-y
        0  a    0
        1  b    1
        2  c    2

        >>> df.pandas_on_spark.attach_id_column(id_type="distributed-sequence", column=(0, 1.0))
           x   0
           y 1.0
        0  a   0
        1  b   1
        2  c   2
        """
        from pyspark.pandas.frame import DataFrame

        if id_type == "sequence":
            attach_func = InternalFrame.attach_sequence_column
        elif id_type == "distributed-sequence":
            attach_func = InternalFrame.attach_distributed_sequence_column
        elif id_type == "distributed":
            attach_func = InternalFrame.attach_distributed_column
        else:
            raise ValueError(
                "id_type should be one of 'sequence', 'distributed-sequence' and 'distributed'"
            )

        assert is_name_like_value(column, allow_none=False), column
        if not is_name_like_tuple(column):
            column = (column,)

        internal = self._psdf._internal

        if len(column) != internal.column_labels_level:
            raise ValueError(
                "The given column `{}` must be the same length as the existing columns.".format(
                    column
                )
            )
        elif column in internal.column_labels:
            raise ValueError(
                "The given column `{}` already exists.".format(name_like_string(column))
            )

        # Make sure the underlying Spark column names are the form of
        # `name_like_string(column_label)`.
        sdf = internal.spark_frame.select(
            [
                scol.alias(SPARK_INDEX_NAME_FORMAT(i))
                for i, scol in enumerate(internal.index_spark_columns)
            ]
            + [
                scol.alias(name_like_string(label))
                for scol, label in zip(internal.data_spark_columns, internal.column_labels)
            ]
        )
        sdf = attach_func(sdf, name_like_string(column))

        return DataFrame(
            InternalFrame(
                spark_frame=sdf,
                index_spark_columns=[
                    scol_for(sdf, SPARK_INDEX_NAME_FORMAT(i)) for i in range(internal.index_level)
                ],
                index_names=internal.index_names,
                index_fields=internal.index_fields,
                column_labels=internal.column_labels + [column],
                data_spark_columns=(
                    [scol_for(sdf, name_like_string(label)) for label in internal.column_labels]
                    + [scol_for(sdf, name_like_string(column))]
                ),
                data_fields=internal.data_fields
                + [
                    InternalField.from_struct_field(
                        StructField(name_like_string(column), LongType(), nullable=False)
                    )
                ],
                column_label_names=internal.column_label_names,
            ).resolved_copy
        )
Exemplo n.º 4
0
    def transform_batch(
        self, func: Callable[..., Union[pd.DataFrame, pd.Series]], *args: Any, **kwargs: Any
    ) -> DataFrameOrSeries:
        """
        Transform chunks with a function that takes pandas DataFrame and outputs pandas DataFrame.
        The pandas DataFrame given to the function is of a batch used internally. The length of
        each input and output should be the same.

        See also `Transform and apply a function
        <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_.

        .. note:: the `func` is unable to access to the whole input frame. pandas-on-Spark
            internally splits the input series into multiple batches and calls `func` with each
            batch multiple times. Therefore, operations such as global aggregations are impossible.
            See the example below.

            >>> # This case does not return the length of whole frame but of the batch internally
            ... # used.
            ... def length(pdf) -> ps.DataFrame[int]:
            ...     return pd.DataFrame([len(pdf)] * len(pdf))
            ...
            >>> df = ps.DataFrame({'A': range(1000)})
            >>> df.pandas_on_spark.transform_batch(length)  # doctest: +SKIP
                c0
            0   83
            1   83
            2   83
            ...

        .. note:: this API executes the function once to infer the type which is
            potentially expensive, for instance, when the dataset is created after
            aggregations or sorting.

            To avoid this, specify return type in ``func``, for instance, as below:

            >>> def plus_one(x) -> ps.DataFrame[int, [float, float]]:
            ...     return x + 1

            If the return type is specified, the output column names become
            `c0, c1, c2 ... cn`. These names are positionally mapped to the returned
            DataFrame in ``func``.

            To specify the column names, you can assign them in a NumPy compound type style
            as below:

            >>> def plus_one(x) -> ps.DataFrame[("index", int), [("a", float), ("b", float)]]:
            ...     return x + 1

            >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]})
            >>> def plus_one(x) -> ps.DataFrame[
            ...         (pdf.index.name, pdf.index.dtype), zip(pdf.dtypes, pdf.columns)]:
            ...     return x + 1

        Parameters
        ----------
        func : function
            Function to transform each pandas frame.
        *args
            Positional arguments to pass to func.
        **kwargs
            Keyword arguments to pass to func.

        Returns
        -------
        DataFrame or Series

        See Also
        --------
        DataFrame.pandas_on_spark.apply_batch: For row/columnwise operations.
        Series.pandas_on_spark.transform_batch: transform the search as each pandas chunks.

        Examples
        --------
        >>> df = ps.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B'])
        >>> df
           A  B
        0  1  2
        1  3  4
        2  5  6

        >>> def plus_one_func(pdf) -> ps.DataFrame[int, [int, int]]:
        ...     return pdf + 1
        >>> df.pandas_on_spark.transform_batch(plus_one_func)
           c0  c1
        0   2   3
        1   4   5
        2   6   7

        >>> def plus_one_func(pdf) -> ps.DataFrame[("index", int), [('A', int), ('B', int)]]:
        ...     return pdf + 1
        >>> df.pandas_on_spark.transform_batch(plus_one_func)  # doctest: +NORMALIZE_WHITESPACE
               A  B
        index
        0      2  3
        1      4  5
        2      6  7

        >>> def plus_one_func(pdf) -> ps.Series[int]:
        ...     return pdf.B + 1
        >>> df.pandas_on_spark.transform_batch(plus_one_func)
        0    3
        1    5
        2    7
        dtype: int64

        You can also omit the type hints so pandas-on-Spark infers the return schema as below:

        >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf + 1)
           A  B
        0  2  3
        1  4  5
        2  6  7

        >>> (df * -1).pandas_on_spark.transform_batch(abs)
           A  B
        0  1  2
        1  3  4
        2  5  6

        Note that you should not transform the index. The index information will not change.

        >>> df.pandas_on_spark.transform_batch(lambda pdf: pdf.B + 1)
        0    3
        1    5
        2    7
        Name: B, dtype: int64

        You can also specify extra arguments as below.

        >>> df.pandas_on_spark.transform_batch(lambda pdf, a, b, c: pdf.B + a + b + c, 1, 2, c=3)
        0     8
        1    10
        2    12
        Name: B, dtype: int64
        """
        from pyspark.pandas.groupby import GroupBy
        from pyspark.pandas.frame import DataFrame
        from pyspark.pandas.series import first_series
        from pyspark import pandas as ps

        assert callable(func), "the first argument should be a callable function."
        spec = inspect.getfullargspec(func)
        return_sig = spec.annotations.get("return", None)
        should_infer_schema = return_sig is None
        should_retain_index = should_infer_schema
        original_func = func
        func = lambda o: original_func(o, *args, **kwargs)

        def apply_func(pdf: pd.DataFrame) -> pd.DataFrame:
            return func(pdf).to_frame()

        def pandas_series_func(
            f: Callable[[pd.DataFrame], pd.DataFrame], return_type: DataType
        ) -> "UserDefinedFunctionLike":
            ff = f

            @pandas_udf(returnType=return_type)  # type: ignore[call-overload]
            def udf(pdf: pd.DataFrame) -> pd.Series:
                return first_series(ff(pdf))

            return udf

        if should_infer_schema:
            # Here we execute with the first 1000 to get the return type.
            # If the records were less than 1000, it uses pandas API directly for a shortcut.
            log_advice(
                "If the type hints is not specified for `transform_batch`, "
                "it is expensive to infer the data type internally."
            )
            limit = ps.get_option("compute.shortcut_limit")
            pdf = self._psdf.head(limit + 1)._to_internal_pandas()
            transformed = func(pdf)
            if not isinstance(transformed, (pd.DataFrame, pd.Series)):
                raise ValueError(
                    "The given function should return a frame; however, "
                    "the return type was %s." % type(transformed)
                )
            if len(transformed) != len(pdf):
                raise ValueError("transform_batch cannot produce aggregated results")
            psdf_or_psser = ps.from_pandas(transformed)

            if isinstance(psdf_or_psser, ps.Series):
                psser = cast(ps.Series, psdf_or_psser)

                field = psser._internal.data_fields[0].normalize_spark_type()

                return_schema = StructType([field.struct_field])
                output_func = GroupBy._make_pandas_df_builder_func(
                    self._psdf, apply_func, return_schema, retain_index=False
                )

                pudf = pandas_series_func(output_func, return_type=field.spark_type)
                columns = self._psdf._internal.spark_columns
                # TODO: Index will be lost in this case.
                internal = self._psdf._internal.copy(
                    column_labels=psser._internal.column_labels,
                    data_spark_columns=[pudf(F.struct(*columns)).alias(field.name)],
                    data_fields=[field],
                    column_label_names=psser._internal.column_label_names,
                )
                return first_series(DataFrame(internal))
            else:
                psdf = cast(DataFrame, psdf_or_psser)
                if len(pdf) <= limit:
                    # only do the short cut when it returns a frame to avoid
                    # operations on different dataframes in case of series.
                    return psdf

                index_fields = [
                    field.normalize_spark_type() for field in psdf._internal.index_fields
                ]
                data_fields = [field.normalize_spark_type() for field in psdf._internal.data_fields]

                return_schema = StructType(
                    [field.struct_field for field in index_fields + data_fields]
                )

                self_applied: DataFrame = DataFrame(self._psdf._internal.resolved_copy)

                output_func = GroupBy._make_pandas_df_builder_func(
                    self_applied, func, return_schema, retain_index=True  # type: ignore[arg-type]
                )
                columns = self_applied._internal.spark_columns

                pudf = pandas_udf(  # type: ignore[call-overload]
                    output_func, returnType=return_schema
                )
                temp_struct_column = verify_temp_column_name(
                    self_applied._internal.spark_frame, "__temp_struct__"
                )
                applied = pudf(F.struct(*columns)).alias(temp_struct_column)
                sdf = self_applied._internal.spark_frame.select(applied)
                sdf = sdf.selectExpr("%s.*" % temp_struct_column)

                return DataFrame(
                    psdf._internal.with_new_sdf(
                        spark_frame=sdf, index_fields=index_fields, data_fields=data_fields
                    )
                )
        else:
            return_type = infer_return_type(original_func)
            is_return_series = isinstance(return_type, SeriesType)
            is_return_dataframe = isinstance(return_type, DataFrameType)
            if not is_return_dataframe and not is_return_series:
                raise TypeError(
                    "The given function should specify a frame or series as its type "
                    "hints; however, the return type was %s." % return_sig
                )
            if is_return_series:
                field = InternalField(
                    dtype=cast(SeriesType, return_type).dtype,
                    struct_field=StructField(
                        name=SPARK_DEFAULT_SERIES_NAME,
                        dataType=cast(SeriesType, return_type).spark_type,
                    ),
                ).normalize_spark_type()

                return_schema = StructType([field.struct_field])
                output_func = GroupBy._make_pandas_df_builder_func(
                    self._psdf, apply_func, return_schema, retain_index=False
                )

                pudf = pandas_series_func(output_func, return_type=field.spark_type)
                columns = self._psdf._internal.spark_columns
                internal = self._psdf._internal.copy(
                    column_labels=[None],
                    data_spark_columns=[pudf(F.struct(*columns)).alias(field.name)],
                    data_fields=[field],
                    column_label_names=None,
                )
                return first_series(DataFrame(internal))
            else:
                index_fields = cast(DataFrameType, return_type).index_fields
                index_fields = [index_field.normalize_spark_type() for index_field in index_fields]
                data_fields = [
                    field.normalize_spark_type()
                    for field in cast(DataFrameType, return_type).data_fields
                ]
                normalized_fields = index_fields + data_fields
                return_schema = StructType([field.struct_field for field in normalized_fields])
                should_retain_index = len(index_fields) > 0

                self_applied = DataFrame(self._psdf._internal.resolved_copy)

                output_func = GroupBy._make_pandas_df_builder_func(
                    self_applied, func, return_schema, retain_index=should_retain_index  # type: ignore[arg-type]
                )
                columns = self_applied._internal.spark_columns

                pudf = pandas_udf(  # type: ignore[call-overload]
                    output_func, returnType=return_schema
                )
                temp_struct_column = verify_temp_column_name(
                    self_applied._internal.spark_frame, "__temp_struct__"
                )
                applied = pudf(F.struct(*columns)).alias(temp_struct_column)
                sdf = self_applied._internal.spark_frame.select(applied)
                sdf = sdf.selectExpr("%s.*" % temp_struct_column)

                index_spark_columns = None
                index_names: Optional[List[Optional[Tuple[Any, ...]]]] = None

                if should_retain_index:
                    index_spark_columns = [
                        scol_for(sdf, index_field.struct_field.name) for index_field in index_fields
                    ]

                    if not any(
                        [
                            SPARK_INDEX_NAME_PATTERN.match(index_field.struct_field.name)
                            for index_field in index_fields
                        ]
                    ):
                        index_names = [
                            (index_field.struct_field.name,) for index_field in index_fields
                        ]
                internal = InternalFrame(
                    spark_frame=sdf,
                    index_names=index_names,
                    index_spark_columns=index_spark_columns,
                    index_fields=index_fields,
                    data_fields=data_fields,
                )
                return DataFrame(internal)
Exemplo n.º 5
0
    def apply_batch(
        self, func: Callable[..., pd.DataFrame], args: Tuple = (), **kwds: Any
    ) -> "DataFrame":
        """
        Apply a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas
        DataFrame given to the function is of a batch used internally.

        See also `Transform and apply a function
        <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_.

        .. note:: the `func` is unable to access to the whole input frame. pandas-on-Spark
            internally splits the input series into multiple batches and calls `func` with each
            batch multiple times. Therefore, operations such as global aggregations are impossible.
            See the example below.

            >>> # This case does not return the length of whole frame but of the batch internally
            ... # used.
            ... def length(pdf) -> ps.DataFrame[int, [int]]:
            ...     return pd.DataFrame([len(pdf)])
            ...
            >>> df = ps.DataFrame({'A': range(1000)})
            >>> df.pandas_on_spark.apply_batch(length)  # doctest: +SKIP
                c0
            0   83
            1   83
            2   83
            ...
            10  83
            11  83

        .. note:: this API executes the function once to infer the type which is
            potentially expensive, for instance, when the dataset is created after
            aggregations or sorting.

            To avoid this, specify return type in ``func``, for instance, as below:

            >>> def plus_one(x) -> ps.DataFrame[int, [float, float]]:
            ...     return x + 1

            If the return type is specified, the output column names become
            `c0, c1, c2 ... cn`. These names are positionally mapped to the returned
            DataFrame in ``func``.

            To specify the column names, you can assign them in a NumPy compound type style
            as below:

            >>> def plus_one(x) -> ps.DataFrame[("index", int), [("a", float), ("b", float)]]:
            ...     return x + 1

            >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]})
            >>> def plus_one(x) -> ps.DataFrame[
            ...         (pdf.index.name, pdf.index.dtype), zip(pdf.dtypes, pdf.columns)]:
            ...     return x + 1

        Parameters
        ----------
        func : function
            Function to apply to each pandas frame.
        args : tuple
            Positional arguments to pass to `func` in addition to the
            array/series.
        **kwds
            Additional keyword arguments to pass as keywords arguments to
            `func`.

        Returns
        -------
        DataFrame

        See Also
        --------
        DataFrame.apply: For row/columnwise operations.
        DataFrame.applymap: For elementwise operations.
        DataFrame.aggregate: Only perform aggregating type operations.
        DataFrame.transform: Only perform transforming type operations.
        Series.pandas_on_spark.transform_batch: transform the search as each pandas chunks.

        Examples
        --------
        >>> df = ps.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B'])
        >>> df
           A  B
        0  1  2
        1  3  4
        2  5  6

        >>> def query_func(pdf) -> ps.DataFrame[int, [int, int]]:
        ...     return pdf.query('A == 1')
        >>> df.pandas_on_spark.apply_batch(query_func)
           c0  c1
        0   1   2

        >>> def query_func(pdf) -> ps.DataFrame[("idx", int), [("A", int), ("B", int)]]:
        ...     return pdf.query('A == 1')
        >>> df.pandas_on_spark.apply_batch(query_func)  # doctest: +NORMALIZE_WHITESPACE
             A  B
        idx
        0    1  2

        You can also omit the type hints so pandas-on-Spark infers the return schema as below:

        >>> df.pandas_on_spark.apply_batch(lambda pdf: pdf.query('A == 1'))
           A  B
        0  1  2

        You can also specify extra arguments.

        >>> def calculation(pdf, y, z) -> ps.DataFrame[int, [int, int]]:
        ...     return pdf ** y + z
        >>> df.pandas_on_spark.apply_batch(calculation, args=(10,), z=20)
                c0        c1
        0       21      1044
        1    59069   1048596
        2  9765645  60466196

        You can also use ``np.ufunc`` and built-in functions as input.

        >>> df.pandas_on_spark.apply_batch(np.add, args=(10,))
            A   B
        0  11  12
        1  13  14
        2  15  16

        >>> (df * -1).pandas_on_spark.apply_batch(abs)
           A  B
        0  1  2
        1  3  4
        2  5  6

        """
        # TODO: codes here partially duplicate `DataFrame.apply`. Can we deduplicate?

        from pyspark.pandas.groupby import GroupBy
        from pyspark.pandas.frame import DataFrame
        from pyspark import pandas as ps

        if not isinstance(func, FunctionType):
            assert callable(func), "the first argument should be a callable function."
            f = func
            func = lambda *args, **kwargs: f(*args, **kwargs)

        spec = inspect.getfullargspec(func)
        return_sig = spec.annotations.get("return", None)
        should_infer_schema = return_sig is None

        original_func = func
        func = lambda o: original_func(o, *args, **kwds)

        self_applied: DataFrame = DataFrame(self._psdf._internal.resolved_copy)

        if should_infer_schema:
            # Here we execute with the first 1000 to get the return type.
            # If the records were less than 1000, it uses pandas API directly for a shortcut.
            log_advice(
                "If the type hints is not specified for `apply_batch`, "
                "it is expensive to infer the data type internally."
            )
            limit = ps.get_option("compute.shortcut_limit")
            pdf = self_applied.head(limit + 1)._to_internal_pandas()
            applied = func(pdf)
            if not isinstance(applied, pd.DataFrame):
                raise ValueError(
                    "The given function should return a frame; however, "
                    "the return type was %s." % type(applied)
                )
            psdf: DataFrame = DataFrame(applied)
            if len(pdf) <= limit:
                return psdf

            index_fields = [field.normalize_spark_type() for field in psdf._internal.index_fields]
            data_fields = [field.normalize_spark_type() for field in psdf._internal.data_fields]

            return_schema = StructType([field.struct_field for field in index_fields + data_fields])

            output_func = GroupBy._make_pandas_df_builder_func(
                self_applied, func, return_schema, retain_index=True
            )
            sdf = self_applied._internal.spark_frame.mapInPandas(
                lambda iterator: map(output_func, iterator), schema=return_schema
            )

            # If schema is inferred, we can restore indexes too.
            internal = psdf._internal.with_new_sdf(
                spark_frame=sdf, index_fields=index_fields, data_fields=data_fields
            )
        else:
            return_type = infer_return_type(original_func)
            is_return_dataframe = isinstance(return_type, DataFrameType)
            if not is_return_dataframe:
                raise TypeError(
                    "The given function should specify a frame as its type "
                    "hints; however, the return type was %s." % return_sig
                )
            index_fields = cast(DataFrameType, return_type).index_fields
            should_retain_index = len(index_fields) > 0
            return_schema = cast(DataFrameType, return_type).spark_type

            output_func = GroupBy._make_pandas_df_builder_func(
                self_applied, func, return_schema, retain_index=should_retain_index
            )
            sdf = self_applied._internal.to_internal_spark_frame.mapInPandas(
                lambda iterator: map(output_func, iterator), schema=return_schema
            )

            index_spark_columns = None
            index_names: Optional[List[Optional[Tuple[Any, ...]]]] = None

            if should_retain_index:
                index_spark_columns = [
                    scol_for(sdf, index_field.struct_field.name) for index_field in index_fields
                ]

                if not any(
                    [
                        SPARK_INDEX_NAME_PATTERN.match(index_field.struct_field.name)
                        for index_field in index_fields
                    ]
                ):
                    index_names = [(index_field.struct_field.name,) for index_field in index_fields]
            internal = InternalFrame(
                spark_frame=sdf,
                index_names=index_names,
                index_spark_columns=index_spark_columns,
                index_fields=index_fields,
                data_fields=cast(DataFrameType, return_type).data_fields,
            )
        return DataFrame(internal)
Exemplo n.º 6
0
    def drop(self,
             codes: List[Any],
             level: Optional[Union[int, Name]] = None) -> "MultiIndex":
        """
        Make new MultiIndex with passed list of labels deleted

        Parameters
        ----------
        codes : array-like
            Must be a list of tuples
        level : int or level name, default None

        Returns
        -------
        dropped : MultiIndex

        Examples
        --------
        >>> index = ps.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')])
        >>> index # doctest: +SKIP
        MultiIndex([('a', 'x'),
                    ('b', 'y'),
                    ('c', 'z')],
                   )

        >>> index.drop(['a']) # doctest: +SKIP
        MultiIndex([('b', 'y'),
                    ('c', 'z')],
                   )

        >>> index.drop(['x', 'y'], level=1) # doctest: +SKIP
        MultiIndex([('c', 'z')],
                   )
        """
        internal = self._internal.resolved_copy
        sdf = internal.spark_frame
        index_scols = internal.index_spark_columns
        if level is None:
            scol = index_scols[0]
        elif isinstance(level, int):
            scol = index_scols[level]
        else:
            scol = None
            for index_spark_column, index_name in zip(
                    internal.index_spark_columns, internal.index_names):
                if not isinstance(level, tuple):
                    level = (level, )
                if level == index_name:
                    if scol is not None:
                        raise ValueError(
                            "The name {} occurs multiple times, use a level number"
                            .format(name_like_string(level)))
                    scol = index_spark_column
            if scol is None:
                raise KeyError("Level {} not found".format(
                    name_like_string(level)))
        sdf = sdf[~scol.isin(codes)]

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[
                scol_for(sdf, col) for col in internal.index_spark_column_names
            ],
            index_names=internal.index_names,
            index_fields=internal.index_fields,
            column_labels=[],
            data_spark_columns=[],
            data_fields=[],
        )
        return cast(MultiIndex, DataFrame(internal).index)
Exemplo n.º 7
0
    def symmetric_difference(  # type: ignore[override]
        self,
        other: Index,
        result_name: Optional[List[Name]] = None,
        sort: Optional[bool] = None,
    ) -> "MultiIndex":
        """
        Compute the symmetric difference of two MultiIndex objects.

        Parameters
        ----------
        other : Index or array-like
        result_name : list
        sort : True or None, default None
            Whether to sort the resulting index.
            * True : Attempt to sort the result.
            * None : Do not sort the result.

        Returns
        -------
        symmetric_difference : MiltiIndex

        Notes
        -----
        ``symmetric_difference`` contains elements that appear in either
        ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by
        ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates
        dropped.

        Examples
        --------
        >>> midx1 = pd.MultiIndex([['lama', 'cow', 'falcon'],
        ...                        ['speed', 'weight', 'length']],
        ...                       [[0, 0, 0, 1, 1, 1, 2, 2, 2],
        ...                        [0, 0, 0, 0, 1, 2, 0, 1, 2]])
        >>> midx2 = pd.MultiIndex([['pandas-on-Spark', 'cow', 'falcon'],
        ...                        ['speed', 'weight', 'length']],
        ...                       [[0, 0, 0, 1, 1, 1, 2, 2, 2],
        ...                        [0, 0, 0, 0, 1, 2, 0, 1, 2]])
        >>> s1 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
        ...                index=midx1)
        >>> s2 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
        ...              index=midx2)

        >>> s1.index.symmetric_difference(s2.index)  # doctest: +SKIP
        MultiIndex([('pandas-on-Spark', 'speed'),
                    (  'lama', 'speed')],
                   )

        You can set names of result Index.

        >>> s1.index.symmetric_difference(s2.index, result_name=['a', 'b'])  # doctest: +SKIP
        MultiIndex([('pandas-on-Spark', 'speed'),
                    (  'lama', 'speed')],
                   names=['a', 'b'])

        You can set sort to `True`, if you want to sort the resulting index.

        >>> s1.index.symmetric_difference(s2.index, sort=True)  # doctest: +SKIP
        MultiIndex([('pandas-on-Spark', 'speed'),
                    (  'lama', 'speed')],
                   )

        You can also use the ``^`` operator:

        >>> s1.index ^ s2.index  # doctest: +SKIP
        MultiIndex([('pandas-on-Spark', 'speed'),
                    (  'lama', 'speed')],
                   )
        """
        if type(self) != type(other):
            raise NotImplementedError(
                "Doesn't support symmetric_difference between Index & MultiIndex for now"
            )

        sdf_self = self._psdf._internal.spark_frame.select(
            self._internal.index_spark_columns)
        sdf_other = other._psdf._internal.spark_frame.select(
            other._internal.index_spark_columns)

        sdf_symdiff = sdf_self.union(sdf_other).subtract(
            sdf_self.intersect(sdf_other))

        if sort:
            sdf_symdiff = sdf_symdiff.sort(*self._internal.index_spark_columns)

        internal = InternalFrame(
            spark_frame=sdf_symdiff,
            index_spark_columns=[
                scol_for(sdf_symdiff, col)
                for col in self._internal.index_spark_column_names
            ],
            index_names=self._internal.index_names,
            index_fields=self._internal.index_fields,
        )
        result = cast(MultiIndex, DataFrame(internal).index)

        if result_name:
            result.names = result_name

        return result
Exemplo n.º 8
0
    def from_frame(df: DataFrame,
                   names: Optional[List[Name]] = None) -> "MultiIndex":
        """
        Make a MultiIndex from a DataFrame.

        Parameters
        ----------
        df : DataFrame
            DataFrame to be converted to MultiIndex.
        names : list-like, optional
            If no names are provided, use the column names, or tuple of column
            names if the columns is a MultiIndex. If a sequence, overwrite
            names with the given sequence.

        Returns
        -------
        MultiIndex
            The MultiIndex representation of the given DataFrame.

        See Also
        --------
        MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
        MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
        MultiIndex.from_product : Make a MultiIndex from cartesian product
                                  of iterables.

        Examples
        --------
        >>> df = ps.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
        ...                    ['NJ', 'Temp'], ['NJ', 'Precip']],
        ...                   columns=['a', 'b'])
        >>> df  # doctest: +SKIP
              a       b
        0    HI    Temp
        1    HI  Precip
        2    NJ    Temp
        3    NJ  Precip

        >>> ps.MultiIndex.from_frame(df)  # doctest: +SKIP
        MultiIndex([('HI',   'Temp'),
                    ('HI', 'Precip'),
                    ('NJ',   'Temp'),
                    ('NJ', 'Precip')],
                   names=['a', 'b'])

        Using explicit names, instead of the column names

        >>> ps.MultiIndex.from_frame(df, names=['state', 'observation'])  # doctest: +SKIP
        MultiIndex([('HI',   'Temp'),
                    ('HI', 'Precip'),
                    ('NJ',   'Temp'),
                    ('NJ', 'Precip')],
                   names=['state', 'observation'])
        """
        if not isinstance(df, DataFrame):
            raise TypeError("Input must be a DataFrame")
        sdf = df.to_spark()

        if names is None:
            names = df._internal.column_labels
        elif not is_list_like(names):
            raise TypeError("Names should be list-like for a MultiIndex")
        else:
            names = [
                name if is_name_like_tuple(name) else (name, )
                for name in names
            ]

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[scol_for(sdf, col) for col in sdf.columns],
            index_names=names,
        )
        return cast(MultiIndex, DataFrame(internal).index)
Exemplo n.º 9
0
    def insert(self, loc: int, item: Any) -> Index:
        """
        Make new MultiIndex inserting new item at location.

        Follows Python list.append semantics for negative values.

        Parameters
        ----------
        loc : int
        item : object

        Returns
        -------
        new_index : MultiIndex

        Examples
        --------
        >>> psmidx = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
        >>> psmidx.insert(3, ("h", "j"))  # doctest: +SKIP
        MultiIndex([('a', 'x'),
                    ('b', 'y'),
                    ('c', 'z'),
                    ('h', 'j')],
                   )

        For negative values

        >>> psmidx.insert(-2, ("h", "j"))  # doctest: +SKIP
        MultiIndex([('a', 'x'),
                    ('h', 'j'),
                    ('b', 'y'),
                    ('c', 'z')],
                   )
        """
        length = len(self)
        if loc < 0:
            loc = loc + length
            if loc < 0:
                raise IndexError(
                    "index {} is out of bounds for axis 0 with size {}".format(
                        (loc - length), length))
        else:
            if loc > length:
                raise IndexError(
                    "index {} is out of bounds for axis 0 with size {}".format(
                        loc, length))

        index_name = [
            (name, ) for name in self._internal.index_spark_column_names
        ]  # type: List[Label]
        sdf_before = self.to_frame(name=index_name)[:loc].to_spark()
        sdf_middle = Index([item]).to_frame(name=index_name).to_spark()
        sdf_after = self.to_frame(name=index_name)[loc:].to_spark()
        sdf = sdf_before.union(sdf_middle).union(sdf_after)

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[
                scol_for(sdf, col)
                for col in self._internal.index_spark_column_names
            ],
            index_names=self._internal.index_names,
            index_fields=[
                InternalField(field.dtype)
                for field in self._internal.index_fields
            ],
        )
        return DataFrame(internal).index
Exemplo n.º 10
0
    def insert(self, loc: int, item: Any) -> Index:
        """
        Make new MultiIndex inserting new item at location.

        Follows Python list.append semantics for negative values.

        .. versionchanged:: 3.4.0
           Raise IndexError when loc is out of bounds to follow Pandas 1.4+ behavior

        Parameters
        ----------
        loc : int
        item : object

        Returns
        -------
        new_index : MultiIndex

        Examples
        --------
        >>> psmidx = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
        >>> psmidx.insert(3, ("h", "j"))  # doctest: +SKIP
        MultiIndex([('a', 'x'),
                    ('b', 'y'),
                    ('c', 'z'),
                    ('h', 'j')],
                   )

        For negative values

        >>> psmidx.insert(-2, ("h", "j"))  # doctest: +SKIP
        MultiIndex([('a', 'x'),
                    ('h', 'j'),
                    ('b', 'y'),
                    ('c', 'z')],
                   )
        """
        validate_index_loc(self, loc)
        loc = loc + len(self) if loc < 0 else loc

        index_name: List[Label] = [
            (name, ) for name in self._internal.index_spark_column_names
        ]
        sdf_before = self.to_frame(name=index_name)[:loc]._to_spark()
        sdf_middle = Index([item]).to_frame(name=index_name)._to_spark()
        sdf_after = self.to_frame(name=index_name)[loc:]._to_spark()
        sdf = sdf_before.union(sdf_middle).union(sdf_after)

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[
                scol_for(sdf, col)
                for col in self._internal.index_spark_column_names
            ],
            index_names=self._internal.index_names,
            index_fields=[
                InternalField(field.dtype)
                for field in self._internal.index_fields
            ],
        )
        return DataFrame(internal).index
Exemplo n.º 11
0
    def _downsample(self, f: str) -> DataFrame:
        """
        Downsample the defined function.

        Parameters
        ----------
        how : string / mapped function
        **kwargs : kw args passed to how function
        """

        # a simple example to illustrate the computation:
        #   dates = [
        #         datetime.datetime(2012, 1, 2),
        #         datetime.datetime(2012, 5, 3),
        #         datetime.datetime(2022, 5, 3),
        #   ]
        #   index = pd.DatetimeIndex(dates)
        #   pdf = pd.DataFrame(np.array([1,2,3]), index=index, columns=['A'])
        #   pdf.resample('3Y').max()
        #                 A
        #   2012-12-31  2.0
        #   2015-12-31  NaN
        #   2018-12-31  NaN
        #   2021-12-31  NaN
        #   2024-12-31  3.0
        #
        # in this case:
        # 1, obtain one origin point to bin all timestamps, we can get one (2009-12-31)
        # from the minimum timestamp (2012-01-02);
        # 2, the default intervals for 'Y' are right-closed, so intervals are:
        # (2009-12-31, 2012-12-31], (2012-12-31, 2015-12-31], (2015-12-31, 2018-12-31], ...
        # 3, bin all timestamps, for example, 2022-05-03 belongs to interval
        # (2021-12-31, 2024-12-31], since the default label is 'right', label it with the right
        # edge 2024-12-31;
        # 4, some intervals maybe too large for this down sampling, so we need to pad the dataframe
        # to avoid missing some results, like: 2015-12-31, 2018-12-31 and 2021-12-31;
        # 5, union the binned dataframe and padded dataframe, and apply aggregation 'max' to get
        # the final results;

        # one action to obtain the range, in the future we may cache it in the index.
        ts_min, ts_max = (self._psdf._internal.spark_frame.select(
            F.min(self._resamplekey_scol),
            F.max(self._resamplekey_scol)).toPandas().iloc[0])

        # the logic to obtain an origin point to bin the timestamps is too complex to follow,
        # here just use Pandas' resample on a 1-length series to get it.
        ts_origin = (pd.Series([0],
                               index=[ts_min
                                      ]).resample(rule=self._offset.freqstr,
                                                  closed=self._closed,
                                                  label="left").sum().index[0])
        assert ts_origin <= ts_min

        bin_col_name = "__tmp_resample_bin_col__"
        bin_col_label = verify_temp_column_name(self._psdf, bin_col_name)
        bin_col_field = InternalField(
            dtype=np.dtype("datetime64[ns]"),
            struct_field=StructField(bin_col_name, TimestampType(), True),
        )
        bin_scol = self._bin_time_stamp(
            ts_origin,
            self._resamplekey_scol,
        )

        agg_columns = [
            psser for psser in self._agg_columns
            if (isinstance(psser.spark.data_type, NumericType))
        ]
        assert len(agg_columns) > 0

        # in the binning side, label the timestamps according to the origin and the freq(rule)
        bin_sdf = self._psdf._internal.spark_frame.select(
            F.col(SPARK_DEFAULT_INDEX_NAME),
            bin_scol.alias(bin_col_name),
            *[psser.spark.column for psser in agg_columns],
        )

        # in the padding side, insert necessary points
        # again, directly apply Pandas' resample on a 2-length series to obtain the indices
        pad_sdf = (ps.from_pandas(
            pd.Series([0, 0], index=[ts_min, ts_max]).resample(
                rule=self._offset.freqstr,
                closed=self._closed,
                label=self._label).sum().index)._internal.spark_frame.select(
                    F.col(SPARK_DEFAULT_INDEX_NAME).alias(bin_col_name)).where(
                        (ts_min <= F.col(bin_col_name))
                        & (F.col(bin_col_name) <= ts_max)))

        # union the above two spark dataframes.
        sdf = bin_sdf.unionByName(
            pad_sdf,
            allowMissingColumns=True).where(~F.isnull(F.col(bin_col_name)))

        internal = InternalFrame(
            spark_frame=sdf,
            index_spark_columns=[scol_for(sdf, SPARK_DEFAULT_INDEX_NAME)],
            data_spark_columns=[F.col(bin_col_name)] + [
                scol_for(sdf, psser._internal.data_spark_column_names[0])
                for psser in agg_columns
            ],
            column_labels=[bin_col_label] +
            [psser._column_label for psser in agg_columns],
            data_fields=[bin_col_field] + [
                psser._internal.data_fields[0].copy(nullable=True)
                for psser in agg_columns
            ],
            column_label_names=self._psdf._internal.column_label_names,
        )
        psdf: DataFrame = DataFrame(internal)

        groupby = psdf.groupby(psdf._psser_for(bin_col_label), dropna=False)
        downsampled = getattr(groupby, f)()
        downsampled.index.name = None

        return downsampled